2015-07-27
收藏
一些函数对称题,不一定要按部就班的解,因为它们有一些巧解。根据我个人的经验,总结了以下五 种对称题的巧解。
一、关于x=a对称型。
例1:设A、B为x轴上两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程为x-y+1=0,则直线PB的方程为_______________。
巧解:由题可知直线PA与直线PB关于x=2对称,
∵PA直线的方程为x-y+1=0 即(x-2)-y+3=0,
∴PB直线的方程为(2-x)-y+3=0即x+y-5=0.
总结:一般的,求与直线ax+by+c=0关于x=a0对称的直线方程,先写成a(x-a0)+by+c+aa0=0形式,再写成a(a0-x)+by+c+aa0=0形式,化简后即是所求值。
应用:求与直线3x+4y-12=0关于x=-1对称的直线方程为_____________。
∵3x+4y-12=0写成3(x+1)+4y-15=0,∴直线方程为-3(x+1)+4y-15=0即3x-4y+18=0
二、关于y=b对称型。
例2:直线l1与直线l2关于y=3对称,已知l1的方程为x+y-6=0,则l2的方程为________。
巧解:∵l1的方程为x+y-6=0即x+(y-3)-3=0,
∴l2的方程为x+(3-y)-3=0即x-y=0
总结:一般的,求与直线ax+by+c=0关于y=b0对称的直线方程,先写成ax+b(y-b0)+c+bb0=0形式,再写成ax+b(b0-y)+c+bb0=0形式,化简后即是所求值。
应用:求与直线4x+5y-20=0关于y=-2对称的直线方程为_____________。
∵4x+5(y+2)-30=0 ∴直线方程为4x-5(y+2)-30=0即4x-5y-40=0.
三、关于y=x对称型。
此类型说明白点就是求反函数,所以用求反函数的方法做,一般情况下,较为简便。
四、关于y=-x对称型。
例3:直线l1与直线l2关于y=-x对称,已知l1的方程为x+y+2=0,则l2的方程为________。
巧解:∵l1的方程为x+y+2=0 ∴l2的方程为-y+(-x)+2=0即x+y-2=0
总结:一般的,求与直线ax+by+c=0关于y=-x对称的直线方程,只需把x换成-y,把y 换成-x,化简后即是所求值。
应用:求与直线3x+4y-12=0关于y=-x对称的直线方程为_____________。
∵3x+4y-12=0, ∴3(-y)+4(-x)-12=0即4x+3y+12=0.
五、关于原点对称。
例3:直线l1与直线l2关于原点对称,已知l1的方程为x-y+3=0,则l2的方程为________。
巧解:∵l1的方程为x-y+3=0 ∴l2的方程为(-x)-(-y)+3=0即x-y-3=0.
总结:一般的,求与直线ax+by+c=0关于原点对称的直线方程,只需把x换成-x,把y 换成-y,化简后即是所求值。
应用:求与直线3x+4y-12=0关于原点对称的直线方程为_____________。
∵3x+4y-12=0, ∴3(-x)+4(-y)-12=0即3x+4y+12=0.
苏教版六年级下册数学期中试卷
苏教版六年级数学组合图形的面积计算
小学数学第十二册期中试卷
小学毕业考试数学试卷精选4
苏教版小学数学12册第4单元试卷
小学毕业考试数学试卷精选10
小学毕业考试数学试卷精选7
苏教版六年级数学下册第三单元教案
六年级数学上学期练习题
六年级数学消去问题应用题练习2
小学毕业考试数学试卷精选9
小学毕业考试数学试卷精选2
苏教版小学数学第十二册第二单元试卷
苏教版六年级数学圆柱圆锥试卷
六年级数学上册期末练习试卷
小学毕业考试数学试卷精选6
六年级数学上学期第三次月考试卷
小学毕业考试数学试卷精选11
小学数学毕业班分类复习填空题练习题
六年级数学消去问题应用题练习1
苏教版六年级上册数学月考试卷
六年级数学上册平时作业中的错误题集
小学毕业生数学模拟水平测试
六年级数学毕业升学模拟试卷3
小学毕业考试数学试卷精选8
苏教版六年级数学上册期中试卷
苏教版六年级数学下学期期中试卷
小学毕业考试数学试卷精选5
苏教版六年级数学下册第三单元检测试卷
苏教版小学数学第十二册期中试卷
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |