哈洛德•贺欧夫各特:彻底证明弱哥德巴赫猜想(一)_趣味数学 - 查字典数学网
数学哈洛德•贺欧夫各特:彻...
首页>数学杂谈>趣味数学>哈洛德•贺...

哈洛德•贺欧夫各特:彻底证明弱哥德巴赫猜想(一)

2015-07-24 收藏

先来一段背景知识:

“任一大于 2 的整数都可以写成三个质数之和。”271 年前,德国人哥德巴赫告诉欧拉这句话时,可能自己也没想到一下就在解析数论这个领域挖了一个东非大裂谷级别的“坑”。

那时 1 还是素数。如今数学界已不用这个约定,原话用现在的语言来表示是,“任一大于 5 的整数都可写成三个质数之和。”

欧拉后来回信哥德巴赫,说这句话可以更简洁——“任一大于 2 的偶数都可写成两个质数之和”。后人将这句话记为“1 + 1”。这个表述如此简单,以至于很多业余爱好者也想在这个问题上一展身手。但它实际上却是那么难,出现之后的 160 年里,没有任何进展。1900 年希尔伯特在第二届国际数学大会提到它后,又重新燃起数学家们挑战和解决它的热情。

然而,至今也没有人证明哥德巴赫猜想。

不过,数学家们已经从 271 年前的出发点走的很远了。从上面关于偶数的哥德巴赫猜想,又可以推出:

任一大于 5 的奇数都可写成三个素数之和。

这被称为“弱哥德巴赫猜想”。1923 年,英国数学家哈代与李特尔伍德证明,假设广义黎曼猜想成立,弱哥德巴赫猜想对充分大的奇数是正确的。

1937 年,苏联数学家伊万•维诺格拉多夫更进一步,在无需广义黎曼猜想的情形下,直接证明了充分大的奇数可以表示为三个素数之和,被称为“三素数定理”。不过他无法给出“充分大”的界限。他的学生博罗兹金于 1939 年确定了一个“充分大”的下限:314348907。这个数字有 6846169 位,要验证比该数小的所有数完全不可行。

1995 年,法国数学家奥利维耶•拉马雷证明,不小于 4 的偶数都可以表示为最多六个素数之和。莱塞克•卡涅茨基证明了在黎曼猜想成立的前提下,奇数都可表示为最多五个素数之和。2012年,陶哲轩在无需黎曼猜想的情形下证明了这一结论。

2013年5月13日,法国国家科学研究院和巴黎高等师范学院的数论领域的研究员哈洛德•贺欧夫各特,在线发表两篇论文宣布彻底证明了弱哥德巴赫猜想。贺欧夫各特在文章“Minor arcs for Goldbach\'s problem”中,给出了指数和形式的一个新界。在文章“Major arcs for Goldbach\'s theorem”中,贺欧夫各特综合使用了哈迪-利特伍德-维诺格拉多夫圆法、筛法和指数和等传统方法,把下界降低到了1030左右,贺欧夫各特的同事 David Platt 用计算机验证在此之下的所有奇数都符合猜想,从而完成了弱哥德巴赫猜想的全部证明。

哈洛德•贺欧夫各特(1977年 -),秘鲁数学家。2013年5月13日,贺欧夫各特在网络上发表两篇论文,宣布彻底证明了弱哥德巴赫猜想。以下问答便是在哈洛德和小方之间展开的。

证明弱哥德巴赫猜想

问:您能向读者介绍一下您自己吗?包括您的工作和经历。

答:我是个搞数学的,在秘鲁出生,高中毕业之后获得了美国大学的一份奖学金,然后在普林斯顿大学攻读博士,在2003年获得了博士学位。之后我到过几个地方工作,比如说加拿大,现在就在巴黎搞研究。

问:解析数论是你的主要研究领域,是这样吗?

答:对的,不过我也搞一点群论,比如说关于置换群的Cayley图的研究。

问:您最近宣布您证明了弱哥德巴赫猜想,您能简单介绍一下这个猜想以及您的证明吗?

答:对的,希望我的证明没有搞错吧。(笑)

这个弱哥德巴赫猜想,它来源于18世纪初欧拉和哥德巴赫的通讯。我们知道欧拉是历史上最伟大的数学家之一,他当时在俄国搞数学。当时的俄国正处于现代化的进程,科学方面一穷二白,但他们仍然希望发展科学。而哥德巴赫则是一位德国青年,在莫斯科的外交部们工作。他不是专门搞数学的,但是个很不错的数学爱好者,而欧拉也很高兴能有位说德语的笔友可以聊聊数学。他们互相写过不少信,而哥德巴赫猜想就是由哥德巴赫提出,由欧拉阐述的。

有两个哥德巴赫猜想:弱哥德巴赫猜想和强哥德巴赫猜想。弱哥德巴赫猜想说的是,每个大于5的奇数都可以表达为三个素数的和;而强哥德巴赫猜想说的是,每个大于2的偶数都可以表达为两个素数的和。大家都觉得这两个猜想是对的,但是还没人能证明这一点。

从名字也可以看出来,如果强哥德巴赫猜想成立,那么弱哥德巴赫猜想也成立。如果每一个大于2的偶数都可以写成两个素数的和,那么对于任意的一个大于5的奇数,减去3之后就是一个偶数,可以写成两个素数的和,而原来的奇数就是这两个素数的和加上3。因为3也是一个素数,所以这个奇数就是三个素数的和。而我做的工作就是证明这个弱哥德巴赫猜想。

在19世纪,人们又开始对这类问题感兴趣。某位不知道哥德巴赫的数学家重新提出了这个猜想。对于这类问题,当时数学家只能做点手工验算。对于强哥德巴赫猜想,他们验算到了大约两百万。用这个结果,他们将弱哥德巴赫猜想验算到了十亿。他们是怎么做的呢?他们写出从3到大概十亿的一串素数,相邻两个素数之间相差不到两百万。用这条"素数天梯"就能验算弱哥德巴赫猜想。对于任意十亿以下的奇数,我们只要找出素数天梯中恰好比它小的那个素数,它们的差一定是个不超过两百万的偶数,所以能写成两个素数的和。也就是说,这个奇数能写成三个素数的和。虽然这个方法不错,但如果只靠手算的话,也推进不了多远。

然后到了20世纪,问题才有了真正的进展。在大约1920年,英国数学家哈代和李特尔伍德证明了,在假定广义黎曼猜想成立的前提下,存在一个常数C,使得所有大于C的奇数都能表达为三个素数的和。他们没有具体给出C的数值。

所谓广义黎曼猜想,它关注的是一类被称为L函数的复变函数。它宣称所有这些L函数的所谓非平凡零点的实部都是1/2。虽然我们有很多很好的理由去相信这个猜想成立,但我们还没办法证明它,所以这类依赖于它的结果都是条件性的。

十几年后,俄国的维诺格拉多夫改进了这个结果。他去掉了之前结果中对广义黎曼猜想的假定,直接证明了存在一个常数C,使得所有大于C的奇数都能表达为三个素数的和。

无论是哈代-李特尔伍德还是维诺格拉多夫,在证明中都没有给出常数C的具体值,不过我们可以从证明中看出来,维诺格拉多夫的常数比哈代他们的要糟糕得多。二十多年之后,维诺格拉多夫的一位学生Borozdin才给出常数C的一个具体值。这并非易事,在数论的某些问题中,你可以证明存在某个常数C,但基本上没有希望确定它到底是多少。我们不太清楚维诺格拉多夫原来的证明有没有提示这个常数的具体值,因为证明很复杂,涉及所谓的"西格尔零点"。但很有可能维诺格拉多夫已经知道他本人的证明在原则上可以给出常数C的具体值。

虽然Borozdin给出了常数C的具体值,但这个值非常大,实际上是3的3的15次方。这个数非常非常大,就连它的位数本身都非常非常大。你可能会说,那就像当年十九世纪那样,验算到这个数,就能完全证明弱哥德巴赫猜想了。问题是,这个任务基本上没可能完成,永远不可能,因为数字太大了。

后来人们就尝试改进这个常数。陈景润和王天泽就将常数改进到了大概10的30000次方,或者是20000,我记不太清了。陈景润就是那位证明了充分大偶数可以表示为一个素数和一个至多只有两个素因子的所谓"殆素数"的和的数学家,我想你们的读者也对他相当熟悉。他们改进的常数比维诺格拉多夫的要好得多,但还是远远不够。后来又有一位中国的数学家,将常数改进到了10的大约1300次方,也就是1跟着一千三百个零那么大的一个数。这挺好的,但也还是远远不够。

其实,即使能将常数减小到10的100次方,也还是不够。为什么?因为这个数比宇宙中所有的粒子数再乘以自大爆炸以来的秒数还要大,所以你即使拥有整个宇宙以及其中的所有原子,用来建造一台大的计算机,也很难在足够短的时间内将猜想验证到10的100次方。所以,我们要做的就是将常数尽量降低,降低到大约10的30次方,到达计算机能处理的范围。其实计算机能处理的要比这个多一点,但是大概不会多太多。

于是,在2005到2006年,我开始对这个问题感兴趣。在此之前,我看过维诺格拉多夫的证明,那是在我的研究生课程上看到的内容之一。陈景润等人的工作的方向又与此完全不同。那时我就意识到要将常数降得很低,我当时能将它降到10的100次方,但是这还不够,对猜想的完全证明没有决定性的作用。

所以,从2006年左右开始,我就一点点地去做这个问题,发掘不同的小想法。也有别人在干类似的事情。大概十几年前,法国的一位数学家Ramaré就证明了,每个偶数都可以写成最多六个素数的和。然后大概一年半前,陶哲轩证明了每个奇数都可以写成最多五个素数的和。从这个节奏看来,我要赶紧点,当时可能我也有些毛了(笑)。所以从去年开始,我就放下了手头上别的工作,开始加班加点把所有的小想法拼在一起。最后我发现它们能行得通,而这无疑是极好的。

我把常数降低到了10的29次方,你在网上的预印本上看到的就是这个数字。实际上我们可以将它降低到10的27次方,但这个没什么意义,因为我们的程序已经能验证到大概8×10^30,比实际需要的还要高80倍,再搞下去也没有必要。

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
大家都在看

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限