达朗贝尔_趣味数学 - 查字典数学网
数学达朗贝尔
首页>数学杂谈>趣味数学>达朗贝尔

达朗贝尔

2016-10-27 收藏

◆您现在正在阅读的达朗贝尔文章内容由收集!本站将为您提供更多的精品教学资源!达朗贝尔达朗贝尔,J L R(D'Alembert Jean Le Rond)1717年11月17日生于法国巴黎;1783年10月29日卒于巴黎。物理学家,数学家。

达朗贝尔作为数学家,同18世纪其他数学家一样,认为求解物理(主要是力学,包括天体力学)问题是数学的目标。他对力学的发展作出了重大贡献,也是数学分析中一些重要分支的开拓者。

力学基础研究

(1)动力学基础的建立。牛顿力学体系的建立,是18世纪的科学家们完成的。达朗贝尔是这批学者的杰出代表之一。他在力学基础上的贡献,集中反映在他的《动力学》中。

(2)流体力学研究。流体的力学研究从牛顿开始,但作为一门学科-流体力学,则是18世纪的欧拉,D 伯努利(Bernoulli),克莱洛和达朗贝尔打下的基础。1752年发表的“流体阻尼的一种新理论”一文,第一次用流体力学的微分方程表示场,并提出了著名的达朗贝尔佯谬

(3)天体力学的奠基者之一。其贡献主要集中在两部著作中:一是1749年出版的《分点岁差和地球章动的研究》;一是《宇宙体系的几个要点研究》共分3卷,1754年出版前2卷,1756年出版第3卷。其中贡献最大的是下面两个课题:一是月球运动理论,二是关于地球形状和自转的理论。

数学分析的开拓者

自牛顿GM 莱布尼茨(Leibniz)发现微积分后,数学发展到一个新阶段。英国数学界由于坚持几何方法而进展缓慢;欧洲大陆数学家却继续在分析方法上不断探索而迅速发展,进入数学分析的开拓时期。达朗贝尔是重要的开拓者之一,其成就仅次与欧拉,拉格朗日,拉普拉斯. D. 伯努利。达朗贝尔的数学成果后来全部收入《数学手册》。下面介绍其主要贡献。

(1)极限概念。达朗贝尔在《百科全书》的“微分”条目中写到:“微分学是作为最初和最终比的方法,即求出这些比的极限的一种方法。”文中还把导数看成极限,并论证0/0可等于任何量。

(2)级数理论。无穷级数在18世纪中,形式讨论占主导地位,一般都作为多项式的推广,只有少数人区别开收敛级数和发散级数。达朗贝尔是其中之一。18世纪已出现三角级数,达朗贝尔就是否所有函数都能表示为三角级数的问题,同欧拉和拉格朗日等进行了激烈的讨论,为19世纪建立三角级数理论打下基础。

(3)微分方程。随着18世纪的力学和天体力学课题的广泛深入研究,常微分方程得到迅速发展。达朗贝尔在这方面的贡献集中在求解上。

达朗贝尔在数学上还有很多其他成果:他是早期研究复数性质的人;还是证明代数学基本定理的最早数学家之一,虽然证明不完全;他对概率论也有研究。

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限