排列与组合之小明班级共有多少人?_考前复习 - 查字典数学网
数学排列与组合之小明班级共...
首页>学习园地>考前复习>排列与组合...

排列与组合之小明班级共有多少人?

2016-10-27 收藏

问题:小明所在的班级要选出4名中队长,要求每位同学在选票上写上名字,也可以写自己的名字。 结果全班的每位同学都在自己的选票上写了4个互不相同的名字。当小明把同学们的选票收集后发现一个有趣的现象:就是任意取出2张选票,一定有且只有一个人的名字同时出现在2张选票上。 请问:小明所在的班级共有多少人?

总体逻辑思路:首先,假设题目所说的情况存在。然后,得出班级人数。最后,构造出一个例子,说明确实存在这种情况。

我们先来证明这个班每个人都恰好都被选了4次。

思路简介:我们首先用反证法证明没有人被选了4次以上。由于平均每人被选了4次,既然没有人被选了4次以上,肯定也不存在被选了4次以下的人。所以,可以得到每个人恰好被选了4次。

首先证明没有人被选了4次以上,我们用反证法。

假设有一个人被选了4次以上(由于很容易证明这个班的人数肯定不少于7人,所以我们可以假设有一个人被选了4次以上),我们设这个人为A同学。接下来我们来证明这种情况不存在。

把所有选择A同学的选票集中到一起,有5张或5张以上。方便起见,我们把这些选票编号,记为A1选票,A2选票,A3选票,A4选票,A5选票,。意思就是选择A同学的第1张选票,选择A同学的第2张选票,。

这些选票都选择了A同学。由于任意2张选票有且只有1个人相同,所以这些选票上除了A同学外,其他都是不同的人。

我们还可以证明,这些并不是全部的选票,不是太难,就不证明了。

既然这些(所有选A同学的选票)不是全部的选票,我们再拿一张没有选择A同学的选票。方便起见,称之为B选票。

根据任意2张选票有且只有1个人相同,A1选票上必有一个人和B选票上的一个人是相同的,而且这个人不是A同学。

同样道理,第A2、A3、A4、A5、上也必有一个人和B选票上的一个人是相同的,而且这个人不是A同学。

由于B选票上只有4个不同的人,而A1、A2、,的数量大于4.所以,A1、A2、A3、选票中至少有2张选票,除了A同学外还有一个共同的候选人。根据任意2张选票有且只有1个人相同,我们知道这是不可以的。

所以,没有人被选了4次以上。

由于平均每人被选4次,既然没有人被选4次以上,当然也就不可能有人被选4次以下。

所以,每个人恰好被选了4次!

-----------------------

证明了每个人都恰好被选了4次后,下面我们用两种方法来求出班级的人数。

方法一:解方程设这一班有n个人,从n张选票里面任选2张有C(n,2)=n(n-1)/2种情况。

由于任意2张选票都有且只有1个人相同,所以每一种情况都代表了一种2张选票重复选择了同一个人的情况。(这句话不太好理解,暂时没有想到好的表述)

每一个人都被选了4次,则2张选票重复选择了同一个人的情况又等于nC(4,2)=6n

所以n(n-1)/2=6n解得n=13.

方法二:分析论证,计算我们从所有选票中拿出一张,这张选票上有四个人,方便起见记为甲、乙、丙、丁四个人。

除了我们拿出的这张选票外,所有选甲的选票组成集合[甲].所有选乙的选票组成集合[乙].所有选丙的选票组成集合[丙].所有选丁的选票组成集合[丁].

由于每个人都恰好被选了4次,所以[甲]、[乙]、[丙]、[丁]四个集合中都有3个元素。而且这四个集合没有交集。

每个集合有3张选票,再加上我们拿出的这张选票,一共有43+1=13张选票,即13个人。

下面我们证明选票数不能多于13张。还是用反证法。

假设选票数多于13张,我们从中取14张。从这14张选票中我们拿出一张称为C选票。除了C选票外还有13张选票,C选票上有4个不同的人,这13张选票中的每一张都有一个人和C选票上的一个人是相同的。这样13张选票中至少有4张选择了C选票上的同一个人,这样再加上C选票,就有5个人选择了同一个人。

根据前面的结论,没有人被选了4次以上,所以选票数不能多于13张。而且只能是13张。

所以只有13张选票,即只有13个人。

--------------

下面说明这种情况确实存在。

给出一种投票结果即可。

(1,2,3,4)

(1,5,6,7)

(1,8,9,10)

(1,11,12,13)

(2,5,8,11)

(2,6,9,12)

(2,7,10,13)

(3,5,9,13)

(3,6,10,11)

(3,7,8,12)

(4,5,10,12)

(4,6,8,13)

(4,7,9,11)

----------------

方法三:网上搜到得一种方法,设班级有x个人,那么x张票中总共有4x(有重复)个名字,也就是说班级里每个人的名字平均出现4次,(1) 如果有一个人的名字在所有票中都出现,那么x张票应该有不重复的名字3x+1个,这与班级有x个人矛盾,(2)如果一个人的名字在5张票中都出现过,那么假设为(1,2,3,4)(1,5,6,7)(1,8,9,10)(1,11,12,13)(1,14,15,16)那么你无法构造一个不包含1,但与前面5张票都有一个同名的票,所以一个人的名字在所有票中最多出现4次,并且每个人的名字在所有票中平均出现4次,那也就是说每个人的名字在所有票中出现4次假设包含1的票为(1,2,3,4)(1,5,6,7)(1,8,9,10)(1,11,12,13)其中2出现了1次,之后构造其他包含名字2的3张票为(2,5,8,11)(2,6,9,12)(2,7,10,13)

之后构造分别包含名字3,4的各3张票。发现符合题意,所以这个班有13人。

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
大家都在看

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限