2016-10-26
收藏
三角函数公式大全
锐角三角函数公式
sin =的对边/ 斜边
cos =的邻边/ 斜边
tan =的对边/ 的邻边
cot =的邻边/ 的对边
倍角公式
Sin2A=2SinA?CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=(2tanA)/(1-tanA^2)
(注:SinA^2 是sinA的平方sin2(A) )
三倍角公式
sin3=4sinsin(/3+)sin(/3-)
cos3=4coscos(/3+)cos(/3-)
tan3a = tan a tan(/3+a)tan(/3-a)
三倍角公式推导
sin3a
=sin(2a+a)
=sin2acosa+cos2asina
辅助角公式
Asin+Bcos=(A^2+B^2)^(1/2)sin(+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asin+Bcos=(A^2+B^2)^(1/2)cos(-t),tant=A/B
降幂公式
sin^2()=(1-cos(2))/2=versin(2)/2
cos^2()=(1+cos(2))/2=covers(2)/2
tan^2()=(1-cos(2))/(1+cos(2))
推导公式
tan+cot=2/sin2
tan-cot=-2cot2
1+cos2=2cos^2
1-cos2=2sin^2
1+sin=(sin/2+cos/2)^2
=2sina(1-sina)+(1-2sina)sina
=3sina-4sina
cos3a
=cos(2a+a)
=cos2acosa-sin2asina
=(2cosa-1)cosa-2(1-sina)cosa
=4cosa-3cosa
sin3a=3sina-4sina
=4sina(3/4-sina)
=4sina[(3/2)-sina]
=4sina(sin60-sina)
=4sina(sin60+sina)(sin60-sina)
=4sina*2sin[(60+a)/2]cos[(60-a)/2]*2sin[(60-a)/2]cos[(60-a)/2]
=4sinasin(60+a)sin(60-a)
cos3a=4cosa-3cosa
=4cosa(cosa-3/4)
=4cosa[cosa-(3/2)]
=4cosa(cosa-cos30)
=4cosa(cosa+cos30)(cosa-cos30)
=4cosa*2cos[(a+30)/2]cos[(a-30)/2]*{-2sin[(a+30)/2]sin[(a-30)/2]}
=-4cosasin(a+30)sin(a-30)
=-4cosasin[90-(60-a)]sin[-90+(60+a)]
=-4cosacos(60-a)[-cos(60+a)]
=4cosacos(60-a)cos(60+a)
上述两式相比可得
tan3a=tanatan(60-a)tan(60+a)
半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.
sin^2(a/2)=(1-cos(a))/2
cos^2(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
三角和
sin(++)=sincoscos+cossincos+coscossin-sinsinsin
cos(++)=coscoscos-cossinsin-sincossin-sinsincos
tan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)
两角和差
cos(+)=coscos-sinsin
cos(-)=coscos+sinsin
sin()=sincoscossin
tan(+)=(tan+tan)/(1-tantan)
tan(-)=(tan-tan)/(1+tantan)
和差化积
sin+sin= 2 sin[(+)/2] cos[(-)/2]
sin-sin= 2 cos[(+)/2] sin[(-)/2]
cos+cos= 2 cos[(+)/2] cos[(-)/2]
cos-cos= -2 sin[(+)/2] sin[(-)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
积化和差
sinsin= [cos(-)-cos(+)] /2
coscos= [cos(+)+cos(-)]/2
sincos= [sin(+)+sin(-)]/2
cossin= [sin(+)-sin(-)]/2
诱导公式
sin(-) = -sin
cos(-) = cos
tan (a)=-tan
sin(/2-) = cos
cos(/2-) = sin
sin(/2+) = cos
cos(/2+) = -sin
sin() = sin
cos() = -cos
sin() = -sin
cos() = -cos
tanA= sinA/cosA
tan(/2+)=-cot
tan(/2-)=cot
tan(-)=-tan
tan(+)=tan
诱导公式记背诀窍:奇变偶不变,符号看象限
万能公式
sin=2tan(/2)/[1+tan^(/2)]
cos=[1-tan^(/2)]/1+tan^(/2)]
tan=2tan(/2)/[1-tan^(/2)]
其它公式
(1)(sin)^2+(cos)^2=1
(2)1+(tan)^2=(sec)^2
(3)1+(cot)^2=(csc)^2
证明下面两式,只需将一式,左右同除(sin)^2,第二个除(cos)^2即可
(4)对于任意非直角三角形,总有
tanA+tanB+tanC=tanAtanBtanC
证:
A+B=-C
tan(A+B)=tan(-C)
(tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC)
整理可得
tanA+tanB+tanC=tanAtanBtanC
得证
同样可以得证,当x+y+z=nZ)时,该关系式也成立
由tanA+tanB+tanC=tanAtanBtanC可得出以下结论
(5)cotAcotB+cotAcotC+cotBcotC=1
(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)
(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC
(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC
(9)sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)+……+sin[+2*(n-1)/n]=0
cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)+……+cos[+2*(n-1)/n]=0 以及
sin^2()+sin^2(-2/3)+sin^2(+2/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
一元二次方程的应用教案2
二次根式教案1
三角形性质教案1
一元二次方程教案7
二次根式的乘除教案3
一元二次方程的应用教案3
一元二次方程的应用教案5
一元二次方程教案1
分式的基本性质教案4
二次根式的运算教案4
分式的基本性质教案3
二次根式的运算教案2
二次根式的乘除教案4
分式方程教案
一元二次方程教案8
一元二次方程教案3
一元二次方程的解法教案4
二次根式教案2
特殊平行四边形教案2
特殊平行四边形教案1
分式的乘除教案2
三角形的中位线教案
分式的加减教案1
一元二次方程教案9
二次根式的运算教案1
一元二次方程教案4
分式的乘除教案1
一元二次方程教案2
函数及其图象导学案
二次根式的乘除教案2
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |