2013-07-26
收藏
【小编寄语】查字典数学网小编给大家整理了高考数学直线与圆的位置关系总复习教案,希望能给大家带来帮助!
高三数学理科复习34----直线与圆的位置关系
【高考要求】:能根据给定直线,圆的方程,判断直线与圆,圆与圆的位置关系,会求圆的切线方程,公共弦方程及弦长(B)
【学习目标】:掌握直线与圆,圆与圆的位置关系的几何图形及其判断方法,能用直线与圆的方程解决一些简单的问题
【知识复习与自学质疑】
(一)问题
1、直线与圆的位置关系有几种?圆与圆的位置关系有几种?
2、如何判断直线与圆,圆与圆的位置关系?
3、如何求直线与圆相交所得的弦长?
(二)练习
1、已知圆 ,直线 ,当 时, 与圆 相交,若另有圆 ,当 时,两圆外切;当 时,两圆内切;当 时,两圆相交
2、若圆⊙ : ,⊙ : ,则以 为切点的⊙ 的切线方程为 :⊙ 的切线方程为
3、直线 被圆 截得的弦长为
4、过点M(2,4)向圆 引切线,则切线方程为
5、若圆 与圆 相交,则实数 的取值范围为
【例题精讲】
1、过点 作直线 ,当直线 斜率为何值时, 与圆 有公共点
2、直线 经过点 ,其斜率为 , 与圆 相交,交点分别为 (1)若 ,求 的值;
(2)若 ,求 的取值范围;
(3)若 为坐标原点),求
3、已知圆 ,点 坐标为(2,-1),过点 作圆 的切线,切点为 (1)求直线 的方程
(2)求过点 的圆的切线长
4、已知实数 满足方程
(1)求 的最大值和最小值;
(2)求 的最大值和最小值
(3)求 的最大值和最小值
【矫正反馈】
1、若半径为1的动圆与圆 相切,则动圆圆心的轨迹方程是
2、直线 与曲线 有且只有一个公共点,则 的取值范围是
3、圆 在点 处的切线方程是
4、若点 为圆 的弦 的中点,则直线 的方程是
5、若直线 与圆 有两个不同的交点,则实数 的取值范围是
【迁移应用】
1、 在圆 内,过点 最长的弦所在直线方程为
2、经过点 和直线 相切,且圆心在直线 上的圆的方程为
3、过原点的直线与圆 相切,若切点在第三象限,则该直线的方程为
4、圆 与直线 的位置关系是
5、已知两圆 和 相交与 两点,则直线 的方程为
6、设圆上的点 关于直线 的对称点仍在这个圆上,且与直线 相交的弦长为 ,求该圆的方程
《等式的基本性质》说课稿
公式法解方程导学案
下学期八年级数学期末考试试卷分析
平行线的判断(一)说课稿
梯形的性质说课稿
八年级下学期期末教学反思
实际问题与一元一次不等式(1)说课稿
勾股定理导学案
数学《图形的放大与缩小》说课稿
初中数学教学典型案例分析
八年级下数学期中试卷分析
初中数学说课稿:轴对称图形
菱形的性质说课稿
八年级数学教案(上)课题:11.1.1变量
探索三角形全等的条件(sss)-教学反思
《轴对称图形的初步认识》教学反思
人教版七年级数学教学反思:相交线与平行线
初中数学说课稿:幂的乘方
初中数学说课稿:绝对值
八年级数学学科试卷分析报告
中学数学校本课程案例
数学《立体图形的展开图》说课稿
八年级数学讲学稿:中心对称
表在折叠 实为对称说课稿
《直线平行的条件》教学设计及说课稿
八年级数学教案(上):课题:11.1.2函数
有理数的减法说课稿
初中数学旋转的特征说课教案
平行四边形性质反思
矩形的判定说课稿
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |