2011-10-20
收藏
根据算式的不同特点,利用数的组成和分解、各种运算定律、性质或它们之间的特殊关系,使计算过程简单化,或直接得出结果,这种简便、迅速的运算叫做简算。
这就需要在进行简便计算之前,要求学生对所学的性质、定律、规律等有透彻的理解和正确的使用。也就是说,这些知识能使计算过程简化,同时使用凑整、拆项、转化、拆数等技巧以达到速算的目的。根据我的归纳,常见以下几类题型:
(一)运用加法的交换律、结合律进行计算。要求学生善于观察题目,同时要有凑整意识。
如:5.7+3.1+0.9+1.3,等。
(二)运用乘法的交换律、结合律进行简算。
如:2.5×0.125×8×4等,如果遇到除法同样适用,或将除法变为乘法来计算。如:8.3×67÷8.3÷6.7等。
(三)运用乘法分配律进行简算,遇到除以一个数,先化为乘以一个数的倒数,再分配。
如:2.5×(100+0.4),还应注意,有些题目是运用分配律的逆运算来简算:即提取公因数。如:0.93×67+33×0.93。
(四)运用减法的性质进行简算。减法的性质用字母公式表示:A-B-C=A-(B+C),同时注意逆进行。
如:7691-(691+250)。
(五)运用除法的性质进行简算。除法的性质用字母公式表示如下:A÷B÷C=A÷(B×C),同时注意逆进行,
如:736÷25÷4。
(六)接近整百的数的运算。这种题型需要拆数、转化等技巧配合。
如;302+76=300+76+2,298-188=300-188-2,等。
(七)认真观察某项为0或1的运算。
如:7.93+2.07×(4.5-4.5)等。
总的说来,简便运算的思路是:
(1)运用运算的性质、定律等。
(2)可能打乱常规的计算顺序。
(3)拆数或转化时,数的大小不能改变。
(4)正确处理好每一步的衔接。
(5)速算也是计算,是将硬算化为巧算。
(6)能提高计算的速度及能力,并能培养严谨细致、灵活巧妙的工作习惯。
八年级上14.1.3积的乘方课件ppt
14.1.1同底数幂的乘法(第1课时)课件ppt寨头堡中学八年级上
《三角形全等的判定》课件(4份)
14.2.2完全平方公式(第2课时)课件ppt
11.1.3三角形的稳定性课件(共2份)
14.3因式分解(2)课件ppt
15.2.3整数指数幂课件ppt
幂的乘方课件ppt(共19张PPT)
单项式的除法课件(共15张PPT)
14.1.1同底数幂的乘法课件ppt
14.2.2完全平方公式(第1课时)课件ppt
14.3.2公式法(第1课时)课件ppt
15.3分式方程(第1课时)课件ppt
积的乘方课件ppt(共11张PPT)
15.2.1分式的乘除(第2课时)课件ppt
15.3分式方程(第2课时)课件ppt
八年级上14.1.2幂的乘方课件ppt
11.1.1三角形的边课件(3份)
《三角形全等的判定》优秀课件(3份)
单项式乘以单项式课件ppt(共16张PPT)
14.3.2公式法(第2课时)课件ppt
14.1.4整式的乘法(第4课时)课件ppt
14.1.4整式的乘法(第5课时)课件ppt
14.2.1平方差公式课件ppt
14.1.2幂的乘方课件ppt
14.2.1平方差公式(1)课件ppt
14.1.3积的乘方课件ppt
11.3.1多边形课件ppt
多项式与多项式相乘课件ppt(共14张PPT)
14.3.1提公因式法课件ppt
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |