2016-10-25
收藏
十字相乘法虽然比较难学,但是学会了它, 用十字相乘法来解题的速度比较快,能够节约时间,而且运算量不大,不容易出错。它在分解因式/解一元二次方程中有广泛的应用:
十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
例1 把m+4m-12分解因式
分析:本题中常数项-12可以分为-112,-26,-34,-43,-62,-121当-12分成-26时,才符合本题
解:因为 1 -2
1 ╳ 6
所以m+4m-12=(m-2)(m+6)
例2 把5x+6x-8分解因式
分析:本题中的5可分为15,-8可分为-18,-24,-42,-81。当二次项系数分为15,常数项分为-42时,才符合本题
解: 因为 1 2
5 ╳ -4
所以5x+6x-8=(x+2)(5x-4)
例3 解方程x-8x+15=0
分析:把x-8x+15看成关于x的一个二次三项式,则15可分成115,
35。
解: 因为 1 -3
1 ╳ -5
所以原方程可变形(x-3)(x-5)=0
所以x1=3 x2=5
例4、解方程 6x-5x-25=0
分析:把6x-5x-25看成一个关于x的二次三项式,
则6可以分为16,23,-25可以分成-125,-55,-251。
解: 因为 2 -5
3 ╳ 5
所以 原方程可变形成(2x-5)(3x+5)=0
所以 x1=5/2 x2=-5/3
用十字相乘法解一些比较难的题目:
例5 把14x-67xy+18y分解因式
分析:把14x-67xy+18y看成是一个关于x的二次三项式,
则14可分为114,27, 18y可分为y.18y , 2y.9y , 3y.6y
解: 因为 2 -9y
7 ╳ -2y
所以 14x-67xy+18y= (2x-9y)(7x-2y)
例6 把10x-27xy-28y-x+25y-3分解因式
分析:在本题中,要把这个多项式整理成二次三项式的形式
解法一、10x-27xy-28y-x+25y-3
=10x-(27y+1)x -(28y-25y+3)
4y -3
7y ╳ -1
=10x-(27y+1)x -(4y-3)(7y -1)
2 -(7y 1)
5 ╳ 4y - 3
=[2x -(7y -1)][5x +(4y -3)]
=(2x -7y +1)(5x +4y -3)
说明:在本题中先把28y-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把
10x-(27y+1)x -(4y-3)(7y -1)分解为:[2x -(7y -1)][5x +(4y -3)]
解法二、10x-27xy-28y-x+25y-3
2 -7y
5 ╳ 4y
=(2x -7y)(5x +4y)-(x -25y)- 3
2 x -7y 1
5 x +4y ╳ -3
=[(2x -7y)+1] [(5x +4y)-3]
=(2x -7y+1)(5x +4y -3)
说明:在本题中先把10x-27xy-28y用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x +4y)-3].
例7:解关于x方程:x- 3ax + 2aab -b=0
分析:2aab-b可以用十字相乘法进行因式分解
解:x- 3ax + 2aab -b=0
x- 3ax +(2aab - b)=0
1 -b
2 ╳ +b
x- 3ax +(2a+b)(a-b)=0
1 -(2a+b)
1 ╳ -(a-b)
[x-(2a+b)][ x-(a-b)]=0
所以 x1=2a+b x2=a-b
两种相关联的变量之间的二次函数的关系,可以用三种不同形式的解析式表示:一般式、顶点式、交点式交点式.利用配方法,把二次函数的一般式变形为 :
Y=a[(x+b/2a)2-(b2-4ac)/4a2]
应用平方差公式对右端进行因式分解,得
Y=a[x+b/2a+b2-4ac/2a][x+b/2a-b2-4ac/2a]
=a[x-(-b-b2-4ac)/2a][x-(-b+b2-4ac)/2a]
因为一元二次方程ax2+bx+c=0的两根分别为x1,x2=(-bb2-4ac)/2a
所以上式可写成y=a(x-x1)(x-x2),其中x1,x2是方程ax2+bx+c=0的两个根
因x1,x2恰为此函数图象与x轴两交点(x1,0),(x2,0)的横坐标,故我们把函数y=a(x-x1)(x-x2)叫做函数的交点式.在解决二次函数的图象和x轴交点坐标有关的问题时,使用交点式较为方便。二次函数的交点式还可利用下列变形方法求得:
设方程ax2+bx+c=0的两根分别为x1,x2
根据根与系数的关系x1+x2=-b/a,x1x2=c/a,
有b/a=-(x1+x2),c/a=x1x2
y=ax2+bx+c
=a[x2+b/a*x+c/a]
=a[x2-(x1+x2)x+x1x2]
=a(x-x1)(x-x2)
更多中考信息》》》
沪教版数学二下《三角形的认识》flash课件之二
沪教版数学二下《位值图上的游戏》ppt课件之一
沪教版数学二下《万以内数的认识与表达、大数读写》ppt课件
2014沪教版数学二下《三三位数的加减法》ppt课件1
沪教版数学二下《几何小实践》PPT课件
2014沪教版数学二下《三位数加减一位数》ppt课件
沪教版数学二下《位值图上的游戏》PPT课件
沪教版数学二下《三位数的减法(竖式计算)》ppt课件
沪教版数学二下《正方体的展开图》ppt课件之一
沪教版数学二下《三位数加法(横式计算)》ppt课件
沪教版数学二下《估算与精确计算》PPT课件
沪教版数学二下《应用题》PPT课件
2014沪教版数学二下《三三位数的加减法》ppt课件
罗山小学沪教二下《几何小实践》PPT课件
沪教版数学二下《三角形与四边形》PPT课件
2014沪教版数学二下《东南西北》ppt课件
沪教版数学二下《三位数的加法(横式计算)》ppt课件
2014沪教版数学二下《万以内数的认识与表达》ppt课件
沪教版数学二下《数学广场――给小兔涂色》ppt课件之一
沪教版数学二下《三位数的减法(横式计算)》ppt课件
沪教版数学二下《估算与精确计算》ppt课件之一
2014沪教版数学二下《二千以内数的认识与表达》ppt课件1
沪教版数学二下《三角形与四边形》ppt课件之三
沪教版数学二下《三角形与四边形》ppt课件之二
2014沪教版数学二下《三角形与四边形》ppt课件
沪教版数学二下《应用题》ppt课件之一
沪教版数学二下《数学学广场――加与减》PPT课件
沪教版数学二下《登险峰》FLASH课件包
2014沪教版数学二下《东南西北》ppt课件1
沪教版数学二下《三角形的认识》flash课件之三
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |