2016-10-25
收藏
如果要想具备福尔摩斯那样神奇的破译密码的本领,不但应具有非凡的推理能力,还要懂得大量的其他知识。然而,只要你有心,也可以破译一些简单的密码。 现在我们来看一个例子:
据传说,英国物理学家牛顿(1642-1727)小的时候,学习成绩几乎在学校是倒数第一。后来他下决心改变这一令人沮丧的状况。有一次,他把自己的作业做得干净整齐,没有任何错误,但正当他把笔和本子收起来时,糟糕的事情发生了:墨水洒了,正好在他的一道算术题上留下了一块墨迹。下图显示了这个令人不快的结果。
式中只剩下了3个数字较为清晰。小牛顿尽了一切努力,最后终于记起来整道题凑巧用了0、1、2、3、4、5、6、7、8、9全部10个数字,一样一个。
如果这是一种从0到9这10个数字编制的密码,你能破译出被墨水盖住的都是哪些数字吗?
由于被墨水盖住的是10个数字,所以原式应为:
我们可以把这个算式写成:
其中每个英文字母分别表示数字0、1、3、5、6、7、9中的某一个。
我们先考虑千位上的G。两个三位数相加,和是四位数,由于两个百位上的数相加,和最多向千位进1,所以,G只能是1,这时,算式就成了:
再看百位上的C和F。如果要保证向千位进1,C不能小于7,即C只可能是7或9中的一个。
设C=9,那么如果十位不进位到百位,F=1;如果十位进位到百位,F=2。这都和已知的数字重复。所以C9。
所以C=7,F=0。即
这时,B可能是3、5、6、7中的某一个。
如果B=3,那么应有E=1或2,但这不可能;
如果B=5,那么E=3,但6+49,9+46;
如果B=6,那么E=5,这时令A=9,则有D=3。
整理出来就是:
A=9,B=6,C=7,D=3,E=5,F=0,G=1。
于是,小牛顿的算式应为:
平行线分线段成比例课件
反比例函数的性质课件
黄金分割课件
一元二次方程的应用课件
概率与统计课件
相似三角形课件
键盘上的字母排列规律课件
用频率估计概率课件
圆和圆的位置关系课件
正多边形课件
两个三角形相似的判定课件2
弧长及扇形的面积课件
实际问题与一元二次方程课件
点和圆的位置关系课件
正多边形和圆课件
相似三角形的概念课件
弧长和扇形面积课件1
随机事件课件
相似三角形判定定理的证明课件
两个三角形相似的判定课件1
相似三角形的周长比和面积的比课件
比例线段课件1
简单图形的三视图课件
相似三角形的性质及其应用课件2
旋转变换课件
一元二次方程课件
事件的可能性课件2
用列举法求概率课件
圆的对称性课件
简单事件的概率课件2
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |