小学数学趣题巧算百题百讲百练--应用题部分_题型归纳 - 查字典数学网
数学小学数学趣题巧算百题百...
首页>学习园地>题型归纳>小学数学趣...

小学数学趣题巧算百题百讲百练--应用题部分

2016-10-25 收藏

数学网为广大小学生和家长整理的小学数学趣题巧算百题百讲百练系列,包括计算、几何、应用题、杂题以及各部分练习题,每部分都有100道精选例题及讲解,以提高广大小学生的综合解题能力。本篇为应用题部分。 

应用题就是应用数学概念及运算意义去解答的实际问题。因此学好数学概念和各种运算意义是会解应用题的基础。

怎样运用数学概念及运算意义去解应用题呢?首先是要用数学概念去分析题中的数量关系。这种分析应该说是全面的、深刻的。要分析已知数量与已知数量,已知数量与未知数量间的关系。然后根据运算意义,用式子表示出题中要求的数量,使问题得到解决。

小学生在分析应用题中数量关系时,常常缺少更深的思考,只满足于得出一般的解答方法,这是不够的。重要的是通过全面的、深刻的分析,综合运用数学概念、运算意义,会寻找巧妙的解法,这对发展小学生观察比较、分析综合、判断推理、想象类比的能力是极为有利的。

牢固而清晰地掌握数学概念、运算意义才能使你去深刻地思考问题。也要学会一些帮你思考的方法。比如把题中的条件排列出来,画一画示意图、线段图等,总之,把题中的条件、问题形象化是一种常见的、有效的办法。它能帮你想得更深刻。

解答应用题最忌讳死背题型、死记解题模式,这样往往束缚了你的手脚。时间久了,你的思维就僵化了,这对今后的学习极为不利。

例45 红花衬衫厂要制做一批衬衫,原计划每天生产400件,60天完成。实际每天生产的件数是原计划每天生产件数的1.5倍。完成这批衬衫的制做任务,实际用了多少天?

分析与解 要求完成这批衬衫的制做任务,实际用了多少天,必须知道这批衬衫的总数和实际每天生产的件数。已知原计划每天生产400件,60天完成,就可以求出这批衬衫的总数量;又知道实际每天生产的件数是原计划生产件数的1.5倍,就可以求出实际每天生产的件数。

完成这批衬衫的制做任务,实际用的天数是:

40060(4001.5)

=24000600

=40(天)

也可以这样想:要生产的衬衫的总数量是一定的,所以,完成这批衬衫制做任务所需要的天数与每天生产衬衫的件数成反比例关系。由此可得,实际完成这批衬衫制做任务的天数的1.5倍,正好是60天,于是得出制做这批衬衫实际需要的天数是:

601.5=40(天)

答:完成这批衬衫制做任务,实际用了40天。

例46 东风机器厂原计划每天生产240个零件,18天完成。实际比原计划提前3天完成,实际每天比原计划每天多生产多少个零件?

分析与解 要求实际每天比原计划每天多生产多少个零件,得先求出实际每天生产多少个零件,再减去计划每天生产的零件数:

24018(18-3)-240

=432015-240

=288-240

=48(个)

也可以这样想:实际与计划所完成的零件总数是相同的。根据反比例意义可知,每天生产零件的个数与完成生产这批零件所用的天数成反比例关系。由此可知,原计划完成任务的天数与实际完成任务的天数比18∶(18-3)即 6∶5,就是实际每天生产零件的个数与原计划每天生产零件个数的比。当然,实际每天生产零件的个数是原计划每天生产零件的个数的6/5。于是求出实际每天比原计划每天多生产零件的个数是:

=48(个)

还可以这样想:生产零件的总数是 24018=4320(个);把这个数分解质因数,然后再把分解的质因数适当地分组,分别表示出原计划每天生产的个数与完成天数的乘积和实际每天生产的个数与实际完成天数的乘积。

4320=25335

=(2435)(232)原计划每天生产的个数与完成

天数的乘积

=(2532)(35)实际每天生产的个数与完成天数的

乘积

进而求出实际每天比原计划每天多生产的个数是:

2532-2435

=288-240

=48(个)

答:实际每天比原计划每天多生产48个。

例47 在春光小学创造杯展览会上,展品中有36件不是六年级的,有37件不是五年级的,又知道五、六两个年级的展品共有45件。那么,五、六年级的展品各有多少件?

分析与解 根据已知,有36件不是六年级的,就是说,1~4年级的展品加上五年级的展品共有36件。有37件不是五年级的,就是说,1~4年级的展品加上六年级的展品共有37件。

比较以上两个条件,可以得出,六年级比五年级的展品多37-36=1件。

又知道五、六两个年级的展品共有45件,于是求出五年级的展品有

(45-1)2=442=22(件)

六年级的展品有

(45+1)2=462=23(件)

答:五年级的展品有22件,六年级的展品有23件。

例48 机械厂零件加工组里有1位师傅和6位徒弟,共7人。徒弟每人每天能加工零件50个,师傅每天加工零件的个数比全组7个人每天平均加工的个数多24个。师傅每天加工零件多少个?

分析与解 师傅每天加工零件的个数比全组7个人平均每天加工的个数多24个。把这24个平均分给6位徒弟,再加上徒弟每天加工的50个,正好是7个人平均每天加工的个数。这个数再加上24就是师傅每天加工零件的个数。

246+50+24

=4+50+24

=54+24

=78(个)

答:师傅每天加工零件78个。

例49 儿童服装厂生产红上衣和黄上衣。每件红上衣需要2个钮扣,每件黄上衣需要4个钮扣。做成的两种颜色的上衣,每30件装成一箱,每箱衣服共需要钮扣72个。每箱中有红上衣和黄上衣各多少件?

分析与解 已知每件黄上衣要用4个钮扣,每件红上衣要用2个钮扣。如果将黄上衣一分为二,黄上衣就成为半件黄上衣了。这时红上衣和半件黄上衣都需要2个钮扣。已知每箱中两种颜色的上衣共需要钮扣72个,于是可以求出红上衣和半件黄上衣共有722=36(件)。实际每箱中两种颜色的上衣共30件,36件比30件多了6件,说明有6件黄上衣被一分为二了,所以每箱中有6件黄上衣。进而求出每箱中红上衣的件数是 30-6=24(件)

列式为:

722-30=36-30=6(件)

30-6=24(件)

还可以这样思考:

把每箱中的30件上衣,每件都取下2个钮扣,这样红上衣就没有钮扣了,黄上衣每件上还剩下2个钮扣,共取下230=60个钮扣。这时箱内的上衣上还剩下72-60=12个钮扣。因为只有每件黄上衣上还剩下2个钮扣,所以122=6(件)就是每箱中黄上衣的件数。那么,每箱中红上衣的件数就是 30-6=24(件)了。

列式为:

(72-230)(4-2)

=(72-60)2

=122

=6(件)

30-6=24(件)

答:每箱中有红上衣24件,有黄上衣6件。

例50 主人的篮子里放着苹果和桃。苹果的个数是桃的3倍。一群顽皮的小猴,趁主人不注意的时候,每只小猴子都拿了8个苹果和3个桃。主人发现时,桃子已被小猴拿光了,还剩下10个苹果。这群顽皮的小猴一共有多少只?

分析与解 篮子里的苹果的个数是桃的3倍,每只小猴子拿了3个桃子,而且拿光了,那么要是每只小猴子拿9个苹果,也可以把苹果拿光(因为苹果个数正好是桃个数的3倍)。可是,每只小猴子只拿了8个苹果,结果还剩下10个苹果,这正好说明这群小猴子共有10只。

答:这群顽皮的小猴一共有10只。

例51 光明小学原计划192天烧煤91800千克。如果每天比原计划节约

分析与解 要求节约出来的煤还可以再烧几天,就必须知道一共节约出来多少煤和节约后每天的烧煤量。

一共节约出来多少千克的煤?

节约出来的煤还可以再烧多少天?

5400450=12(天)

还可以这样想:

17个单位,那么实际每天节约用煤为1个单位,实际每天用煤为16个单位。原计划烧煤192天,一共可以节约出192个单位的煤,这些煤还可以烧:

19216=12(天)

答:节约出来的煤还可以再烧12天。

例52 有1993个人和1993斤面粉。第1个人拿走了全部面粉的1/2,第2个人拿走了余下面粉的1/3,第3个人拿走了再余下的1/4,第1992

走了。那么第1993个人拿走了多少斤面粉?

分析与解 解答这道题不宜采用分步计算的方法。1993斤面粉被第1个人拿走1/2,剩下的当然是全部的1/2,这一算就出现了小数,再算第2个人拿走后剩下多少斤面粉就更复杂了。因此解答时应从整体去思考,列综合算式解答,就简便多了。依题意列式为

答:第1993个人拿走了1斤面粉。

分析与解 根据题意,从第10天、第9天,倒推回去,列式求出这批面粉原来共有

=40(袋)

也可以这样想:

这些面粉共吃了10天,把这堆面粉平均分成10堆。第1天吃了这批面

每天吃的都是平均分成10堆中的1堆,第10天吃的那一堆正好是4袋,因此,这批面粉共有

410=40(袋)

答:这批面粉原来共有40袋。

例54 有两个容器,第一个容器中有1升水,第二个容器是空的。将第一个容器中的水的1/2倒入第二个容器中,然后将第二个容器里的水的1/3倒回第一个容器中,然后再将第一个容器里的水的1/4倒入第二个容器中,如此进行下去,倒了1993次后,第一个容器里有多少水?

分析与解 根据题意,把倒的次数、两杯中水的数量列成下表。

从上表不难看出,凡是倒了1、3、5、奇数后,第一个容器里的水都是1/2升。当然,倒了1993次后,第一个容器里的水也是1/2升。

也可以列式计算:

例55 幼儿园小朋友过六一儿童节,阿姨给小朋友分苹果,开始每人分3个,结果有15个人只分到2个;后来又买来40个苹果,又分给小朋友,结果正好每个分到4个。幼儿园一共有多少个小朋友?

分析与解 题中告诉我们,开始每人分3个,结果有15个小朋友只分到2个,就是说,每人分3个缺少15个苹果。后来又买来40个苹果,又分给小朋友,结果正好每人分到4个。把这40个苹果先拿出15个,分给开始分时每人只分到2个苹果的那些小朋友,这时还剩下25个苹果,每人再分1个,正好是每人分到4个苹果。因此得出,幼儿园共有25个小朋友。

(40-15)(4-3)

=251

= 25(人)

答:幼儿园一共有25个小朋友。

例56 一个箱子里装满了实心球,连箱子共重12千克。从箱中取出实心球的1/4后,剩下的实心球连箱共重9.5千克。问箱子重多少千克?

分析与解 一个箱子里装满了实心球,连箱子共重12千克;从箱中取实心球的1/4后,剩下实心球的3/4连箱子共重9.5千克。由此可以得出,实心球的1/4重(12-9.5)千克,那么实心球的总重是:

=10(千克)

箱子重量是:

12-10=2(千克)

答:箱子重2千克。

分析与解 把绳子的全长看作1,把绳子折成三股来量,就是用绳长的1/3来量;把绳子折成四股来量,就是用绳长的1/4来量。井外所余绳子长度之差就是绳长1/3与绳长1/4之差。于是得到绳子的全长是:

也可以这样想:

正好是绳子的长度。

正好是绳子的长度。

好是井的深度。

于是求出井的深度是:

例58 同学们搞野营活动。一个同学到负责后勤工作的老师那里去领碗。老师问他领多少,他说领55个。又问多少人吃饭?他说:一个人1个饭碗,两个人1个菜碗,三个人1个汤碗。请算一算这个同学给参加野营活动的多少人领碗?

分析与解 先算出平均1人要用多少个碗,再算出多少人需要55个碗。列式是

还可以这样解答:

吃饭时每人1个饭碗,要用多少个饭碗,就表示有多少人参加野营活动。题中又说,两个人1个菜碗,三个人1个汤碗。我们知道,2和3的最小公倍数是6,就是说,当有6个人吃饭时,要用6个饭碗,3个菜碗,2个汤碗。于是得出有6个人吃饭时,共需要6+3+2=11个碗。

于是,我们把参加野营活动的人,分成每6个人一组,每组人吃饭时要用11个碗。

由5511=5可以知道,领55个碗说明吃饭的人正好分成了5组,于是求出这个同学要给65=30人领碗。

答:这个同学给参加野营活动的30人领碗。

大2岁。那么父亲几岁?母亲几岁?儿子几岁?

分析与解 题中告诉我们,儿子的年龄是母亲年龄的3/10,是父亲年龄的2/7,就是说,母亲年龄

的3/10等于父亲年龄的2/7。由此可知,母亲年龄的21/70岁,这时父亲比母亲大1岁。

题中告诉我们,父亲年龄比母亲大2岁,因此可知,母亲为 40岁,父

答:父亲42岁,母亲40岁,儿子12岁。

例60教室里有一些男生和一些女生。老师问他们人数。一个男生告诉老

分析与解 题中告诉我们,除去1个男生,男生人数是女生人数的

题中还告诉我们,除去1个女生,女生人数是男生人数的3/5。

示女生人数,除去1个女生,正好是9个女生。分母部分的15恰好表示男生人数,除去1个男生,正好是14个男生。

由此得出,教室里有男生15人,女生10人。

答:教室里有男生15人,女生10人。

例61 某书店原有书若干本,第一天售出全部的1/2,第二天又运进900本,第三天售出的书比现有的书的1/3还多40本,结果还剩下800本。书店里原有书多少本?

分析与解 根据题中给出的条件,可以倒推回去,求出书店里原有书多少本。

假设第三天售出的书比现有的书的1/3不多40本(即少售了40本),

,于是可以求出第三天售书前书店里有书多少本。

假设第二天不运进900本,这时书店里的书恰好是第一天卖出原来的书

求出书店里原有书的本数。

=720(本)

答:书店里原有书720本。

例62 有7袋米,它们的重量分别是 12千克、 15千克、17千克、20千克、22千克、24千克、26千克。甲先取走一袋,剩下的由乙、丙、丁取走。已知乙和丙取走的重量恰好一样多,而且都是丁取走重量的2倍。那么甲先取走的那一袋的重量是多少千克?

分析与解 题中告诉我们,甲先取走一袋后,剩下的由乙、丙、丁取走。已知乙和丙取走的重量恰好一样多,而且都是丁取走的重量的2倍,因此乙、丙、丁三人取走的重量是了取走的重量的5倍。

而7袋米的总重量是

12+15+17+20+22+24+26=136(千克)

从136中减去5的倍数,剩下的就是甲取走的重量的千克数。或者说,从136千克中减去甲取走那袋米的重量,剩下的重量一定是5的倍数。要使136减去一个数后得数能被5除尽,这个数的个位数字一定是1或6。而题中列出的7袋米的重量的千克数只有26的个位数字为6,因此甲先取走的那一袋米的重量是26千克。

答:甲先取走的那一袋米的重量是26千克。

例63 有若干堆围棋子,每堆围棋子的数目一样多,并且每堆中的白棋子占28%。明明从第一堆中拿走一半棋子,而且都是黑棋子。现在在所有的棋子中,白棋子占32%。那么原来共有几堆围棋子?

分析与解 根据题意,白棋子的个数在明明取走棋子的前后是没有变化的。由于取走了黑棋子,棋子总数有了变化,所以白棋子占棋子总数的百分数就发生变化,原来白棋子占总数的28%,而后来占总数的32%。由此可知,

答:原来共有4堆围棋子。

例64 植树节那天,学校把一批树苗分给三~六年级部分学生去植。如果由三年级的部分学生单独去植,平均每人植6株;如果由四年级的部分学生单独去植,平均每人植12棵;如果由五年级的部分学生单独去植,平均每人植20棵;如果由六年级的部分学生单独去植,平均每人植30棵。现在由三、四、五、六4个年级的部分学生都去植,平均每人植几棵?

分析与解 不管由几年级去植树,树苗的总数是一定的。设要植的树苗

生都去植树,平均每人植的棵数是

还可以这样想:根据题中给出的三~六年级单独去植树时平均每人植的棵数,可以推得,要植树的总棵数一定是6、12、20、30这四个数的公倍数。这四个数的最小公倍数是60。假设要植60棵树,那么不难算出三~六年级的人数分别是10人、5人、3人、2人,于是求出三~六年级的部分学生都去植树时,平均每人植的棵数是:

答:三、四、五、六4个年级的学生都去植树时,平均每人植3棵树。

例65 一件工程,如果甲先独做12天,然后乙再单独做9天,正好完成;如果乙先独做21天,然后甲再独做8天,也正好完成。如果这件工程由甲单独做,几天可以完成?

分析与解 题中所给的条件可用图49表示。

从图49不难看出,完成相同的工作量(图中双竖线中间部分),甲要用12-8=4(天),乙要用21-9=12(天),从而求出,在完成相同的工作量时,甲、乙所用时间的比为4∶2即1∶3。因此,甲单独完成这件工程要用

答:这件工程由甲单独做,15天可以完成。

例66 某水池可以用甲、乙两个水管注水。单开甲管,要10小时把空池注满;单开乙管,要20小时把空池注满。现在要求用8小时把空池注满,并且甲、乙两管合开的时间要尽可能地少,那么甲、乙两管合开最少要几小时?

分析与解 因为甲管注水较快,所以甲管应一直开着,8小时可给空池注水

开乙管的时间是:

即甲、乙两管合开的最少的时间是4小时。

也可以这样想:因为甲管注水较快,所以甲管应该一直开着。由于单开甲管10小时才能把空池注满,所以单开甲管8小时,还差甲管再开2小时的水量才能把空池注满。已知注满水池单开甲管要10小时,单开乙管要20小时,因此,单开甲管2小时的水量,就是单开乙管4小时的水量,即乙管要开4小时、也就是甲、乙两管合开的最少时间是4小时。

答:甲、乙两管合开最少要4小时。

例67 一件工程,甲独做20天可以完成;乙独做30天可以完成。现在由甲、乙合做,因为乙途中休息了几天,结果经过14天才完成任务。那么乙途中休息了几天?

分析与解 题中告诉我们,由于乙在甲、乙合做全工程中休息了几天,结果经过14天才完成任务。假设乙途中没有休息,那么甲、乙合做14天就会超过全部工程量,而超过的部分恰好是乙由于休息而没有干的,于是求出乙途中休息的天数是:

=5(天)

答:乙途中休息了5天。

例68 一件工程,甲乙丙三队合做,要8天完成。已知甲队每天的工作效率等于乙、丙两队每天的工作效率之和,丙队每天的工作效率相当于甲、乙两队每天工作效率和的1/5,那么这件工程如果由乙队单独去做,要几天才能完成?

分析与解 题中告诉我们,甲队每天的工作效率等于乙、丙两队每天的工作效率之和,丙队每天的工作效率相当于甲、乙两队每天工作效率之和的

题中还告诉我们,甲乙丙三队合做这件工程,8天可以完成,甲队每天工作效率又等于乙丙两队每天工作效率之和,所以这件工程如果由甲队独做,

由此得出,乙单独完成这件工程要用的天数是:

1623=24(天)

答:这件工程若由乙队单独去做,要24天才能完成。

例69 一项工程,如果由第一、二、三小队合干,需要12天才能完成;如果由第一、三、五小队合干,需要7天才能完成;如果由第二、四、五小队合干,需要8天才能完成;如果由第一、三、四小队合干,需要42天才能完成。现在由这五个小队一起干这项工程,几天才能完成?

分析与解 要求这五个小队一起干时完成这项工程需用的天数,先要求出这五个小队工作效率之和。设这五个小队的工作效率分别为A、B、C、D、E。根据已知可得

将上面四式相加,得

即3(A+B+C+D+E)=1/2

所以 A+B+C+D+E=1/6

因此,第一、二、三、四、五小队合干这项工程,要用

答:五个小队合干这项工程,6天可以完成。

例70 一个水池底部要用一个常开的排水管,上部要有若干个同样粗细的进水管。当打开4个进水管时,需要5小时才能注满一池水;当打开2个进水管时,需要15小时才能注满一池水。现要需要在2小时内注满一池水,那么至少需要打开几个进水管?

分析与解 假设每个进水管每小时进水量为1,那么打开 4个进水管, 5小时的进水量为 45=20。

打开2个进水管,15小时的进水量为215=30。

比较上面得出的结果,不难求出,排水管每小时的排量为

(30-20)(15-5)=1

进而求出满池的水量为

20-15=15或30-115=15

那么,要在2小时内注满水池,至少要打开的进水管为:

(15+12)2=8.59(个)

答:至少要打开9个进水管。

例71 甲、乙二人同时从A地出发沿同一条路去B地,甲的速度始终不变,而乙在行走AB间的前1/5路程时的速度是甲速度的2倍,在行走后AB

时间少,因此甲先到达B地。

答:甲先到达B地。

例72 从A城到B城,甲要行2小时,乙要行1小时40分钟。如果甲先行10分钟,那么乙出发后多少分钟,在何处追上甲?

分析与解 根据已知,从A城到B城,甲比乙要多用

602-(60+40)=20(分钟)

也就是说,如果甲比乙早出发20分钟,二人就可以同时到达B城。现在甲比乙早出发10分钟,即甲先行10分钟后乙再出发,那么二人就会同时到达A、B两城间的中点处。

到达两城间的中点处,乙要用50分钟,这就是说,乙出发50分钟,在A、B两城间的中点处追上甲。

答:乙出发后50分钟,在两城间中点处追上甲。

例73 一辆客车和一辆货车同时从甲、乙两地相向开出,客车行了甲、乙两地间全程的3/5时,恰好和货车相遇。相遇后货车仍以原来每小时行40千米的速度向甲地驶去,又用了18小时到达甲地。求客车的速度。

分析与解 题中要求客车的速度,那么就要先求出客车行驶的路程和行驶这段路程所用的时间。题中已知客车和货车同时从甲、乙两地相向而行,客车行了甲、乙两地间全程的3/5与货车相遇,这时货车行了甲、乙两地全程的2/5。货车仍以原速(每小时40千米)又行了18小时到达甲地,即用了18小时走了全程的3/5,这样可以求出甲、乙两地间的路程是:

=1200(千米)

货车每小时行40千米,它行全程2/5的路程所用的时间和客车行全程3/5所用的时间是相同的,即两车同时出发相向而行至相遇时所用的时间。

=48040

=12(小时)

=72012

=60(千米)

也可以这样想:根据已知货车行了全程的3/5用了18小时,可以求出它行全程要用几小时。

所以客车的速度是:

401.5=60(千米)

还可以这样想:客车、货车同时从甲、乙两地出发到相遇,它们行驶的时间是相同的,因此客车、货车行驶的路程比就是客、货两车的速度比。所以客车的速度是:

答:客车每小时行60千米。

例74 一辆汽车运一批货从江城到海乡,又从海乡运一批货返回江城,往返共用了13.5小时。去时用的时间是回来时用的时间的1.25倍,去时的速度比返回时的速度每小时慢6千米。这辆汽车往返共行了多少千米?

分析与解 已知这辆汽车往返共用13.5小时,去时用的时间是回来时用的时间的1.25倍,即往返时间比是1.25:1,即5∶4。显然去时用的时间是:

=7.5(小时)

因为往返的路程是相等的,往返时间比是5∶4,那么往返的速度比就是4∶5。已知去时比回来时每小时慢6千米,于是可以求出去时的速度是:

6(5-4)4

=614

=24(千米)

这样又能求出这辆汽车往返的路程。这辆汽车往返共行了

247.52= 360(千米)

答:这辆汽车往返共行了360千米。

例75 甲、乙两辆汽车同时从A、B两地出发相向而行,第一次相遇地点离A地100千米,相遇后两车仍以原速继续行驶,分别到达B、A两地后,立刻沿原路返回,这时又在距B地60千米处相遇。求A、B两地间的距离。

分析与解 根据题中条件,可列方程解答。设A、B两地间的距离为x千米。两车速度是不变的,因此两车从出发到第一次相遇时所行路程比与从出发到第二次相遇时所行路程比是相等的,于是列方程得

200x-6000=x2-40x-6000

x2-240x=0

x(x-240)=0

x=240

这里列的方程是正确的,但小学生还不会解这个方程。

要是按如下思路来思考问题,那么,问题就可迎刃而解了。

甲、乙两车同时从A、B两地出发相向而行,到第一次相遇,两车共行了一个A到B的全程,其中甲车行了100千米。两车从A、B出发到第二次相遇,两车共行了3个A到B的全程,因此甲车行了3个100千米,这时离开B地60千米,因此,A、B间的距离是

1003-60=240(千米)

答:A、B两地间的距离是240千米。

例76 一条小河流过A、B、C三镇。 A、B两镇之间有汽船来往,汽船在静水中的速度为每小时11千米。B、C两镇之间有木船摆渡,木船在静水中的速度为每小时3.5千米。已知A、C两镇水路相距50千米,水流速度为每小时1.5千米。某人从A镇上船,顺流而下到B镇,吃午饭用去1小时,接着乘木船又顺流而下到C镇。从A镇到C镇前后共用了8小时,那么A、B两镇间相距多少千米?

分析与解 由已知可得:汽船顺水每小时航行

11+1.5=12.5(千米)

木船顺水每小时航行

3.5+1.5=5(千米)

根据题意,两船航行共用了

8-1=7(小时)

假定从A镇到B镇也用木船摆渡,那么木船行了7小时共行

57=35(千米)

即少行了50-35=15(千米)

这是由于木船的速度比汽船慢的缘故。由此可求得汽船从A镇航行到B镇所用的时间为

15(12.5-5)=2(小时)

A、B两镇之间的距离为

12.52=25(千米)

答:A、B两镇之间相距25千米。

例77 小明骑自行车,从A地去B地,小华步行从B地去A地,二人同时出发相向而行,途中在C地相遇。相遇后小明又过15分钟到达B地,而小华却用了1小时到达A地,那么小明骑车与小华步行的速度比是几比几?

分析与解 根据题中给出的条件可知,小明骑车从A到C所用时间与小华步行从B到C所用时间相等。假设他们用的时间为x小时。

题中又告诉我们,小明从C到B所用的时间为15分钟,即1/4小时;小华从C到A所用的时间为1小时,而小明与小华行同样长的路程所用时间的

答:小明骑车与小华步行的速度比为2∶1。

例78 下图A、B、C是三个站,B到A、C两站的距离相等。小明和小强分别从A、C两站同时出发相向而行。小明过B站100米后与小强相遇。然后二人继续前进。小明到达C站后,立即沿原路返回,经过B站后300米追上小强。那么A、C两站间的距离是多少米?

分析与解 已知A、B两站间的距离和B、C两站间的距离相等,设A、B(或B、C)间的距离为x米。

根据题意,小明、小强分别从A、C两站同时出发相向而行,第一次相遇时,小明行了(x+100)米;小强行了(x-100)米。二人同时出发相向而行到第一次相遇,再到小明追上小强,小明行了(3x+30O)米,小强行了(x+300)米。

比较上面所得的结果不难发现,在同样多的时间里,小明行走(3x+30O)米的路程是他行走(x+100)米路程的3倍,那么小强行走的(x+300)米的路程也是小强行走(x-100)米路程的3倍,即

3(x-100)=x+300

3x-300=x+300

2x=600

即A、C两站间的距离是600米。

答:A、C两站间的距离是600米。

例79 某市20路公共汽车往返于甲、乙两地。甲、乙两地都按间隔相同的时间发一辆车。一个骑自行车的人按不变的速度向前行走,每隔15分钟有一辆公共汽车从背后开过,每隔10分钟有一辆公共汽车迎面驶来。问某市20路公共汽车每隔多少分钟分别从甲、乙两地发一辆车?

分析与解 根据题意,由于汽车每隔一定时间发一辆车,所以每相邻的两辆公共汽车之间的距离是相等的。假设每相邻的两辆公共汽车之间的距离

这12分钟就是汽车发车间隔的时间。

答:公共汽车每隔12分钟分别从甲、乙两地发一辆车。

例80 一个步行人和一个骑车人沿同一条公共汽车线路同向而行。骑车人的速度是步行人速度的3倍。每隔10分钟有一辆公共汽车超过步行人,每隔20分钟有一辆公共汽车超过骑车人。如果从始发站每隔同样的时间发一辆公共汽车,那么发车的间隔时间是多少?

分析与解 设每隔x分钟发一辆公共汽车。由题意可知,步行人走10分钟的路,公共汽车要行(10-x)分钟;骑车人行20分钟的路,公共汽车要行(20-x)分钟。

题中告诉我们,骑车人的速度是步行人的速度的3倍,因此,步行人所用时间与公共汽车所用时间的比的比值是骑车人所用时间与公共汽车所用时间的比的比值的3倍。

解方程得10(20-x)=(10-x)203

200-10x=600-60x

50x=400

x=8

也可以这样思考:

假设步行人走10分钟的路程为1。

因为骑车人的速度是步行人速度的3倍,所以骑车人行10分钟的路程为3,骑车人行20分钟的路程为6。

题中告诉我们,从始发站每隔同样时间发一辆公共汽车,所以在行走中两辆汽车的距离是相同的。已知每隔10分钟有一辆公共汽车超过步行人,每隔20分钟有一辆公共汽车超过骑车人。由此得出,汽车在10分钟所行的路程是(汽车间隔+1),而汽车在20分钟所行的路程则是(汽车间隔+6),所以汽车在10分钟所行的路程等于(6-1)。由此可见,汽车在10分钟所行的路程是步行人在10分钟所行路程的(6-1)1=5倍,那么汽车行驶步行人在10分钟内所行的路程,只要105=2分钟就可以了。

因为每隔10分钟有一辆公共汽车超过步行人,所以公共汽车站发车的间隔是10-2=8分钟。

答:每隔8分钟发一辆公共汽车。

例81 张、王二人同时从A地去108千米外的B地。张先乘车,行一段路后下车改为步行,直达B地。王先步行,当与张乘坐的车返回A地途中相遇时,立即改为乘车向B地驶去。结果张、王二人同时到达B地。已知二人步行速度都是每小时行6千米,汽车每小时行36千米。问张是在离开A地多少千米处下车的?

分析与解 题中告诉我们,张先乘车后步行,王先步行后乘车,二人同时从A地出发又同时到达B地,这说明张、王二人步行的路程和乘车的路程分别相等。又知道二人步行的速度都是每小时行6千米,汽车每小时行36千米,因此,在相同的时间里,汽车行驶的路程是步行路程的366=6倍。

根据已知,张、王二人步行和乘车的情况如下图所示。

根据前面分析可知,从A到C再到D的路程是AD间路程的6倍,所以从A到C的路程是AD间路程的(6+1)2=3.5倍。而A、D间的路程与C、B间的路程相等,因此A、B间的路程是C、B间路程的3.5+1=4.5倍。已知A、B间的路程是108千米,所以 C、B间的路程是 1084.5=24千米。由此得出,A、C间的路程是108-24=84千米,即张是在离开A地84千米处下车的。

也可以列方程求解。

设A、D间的路程为x千米,当然C、B间的路程也是x千米,那么从

9x=216

x=24

A、C间的路程为108-24=84(千米)

答:张是在离开A地84千米处下车的。

例82 有两个班的小学生要到少年宫参加活动,但只有一辆车接送。第1班的学生坐车从学校出发,第2班的学生同时开始步行。车到途中某处,让第1班学生下车步行,车立刻返回接第2班学生上车并直接开往少年宫。学生步行速度为每小时4千米,载学生时车速每小时40千米,空车每小时50千米。问要使两批学生同时到达少年宫,第1班学生步行了全程的几分之几(学生上下车时间不计)?

分析与解 根据题意,先把题中数量关系用图53表示出来。

要使两班学生同时从学校出发,并且同时到达少年宫,那么,这两班学生乘车和步行的路程必须分别相等,即AB=CD,AC=BD。

已知载学生时车速为每小时40千米,学生步行速度为每小时4千米,所以两班学生同时从学校出发到第1班学生下车时,乘车行驶的路程AB正好是

第1班学生下车后,汽车立即返回去接第2班学生,返回时车速为每小时

于是求出第2班学生又步行的路程BC相当于已步行的路程AB的

这样进一步求出第2班从出发到乘车,即步行的路程

那么第1班步行了全程的

还可以列方程解答。

设从出发到第1班学生下车行了m小时,汽车立即返回到接第2班学生上车又行了n小时,这时汽车行了(40m+50n)千米,步行行了(4m+4n)千米。于是列方程,得

40m-4m-4n=50n

36m=54n

步行路程占全程的

答:第1班学生步行了全程的1/7。

例83 A、B两地间有一条公路。小明骑自行车从A地出发去B地,同时小华骑摩托车从B地去A地,60分钟后二人第一次相遇。相遇后二人继续前进,小华到达A地后立即返回,第一次相遇后又过了20分钟追上小明。小华到B地后又马上返回,这样一直下去,直到小明到达B地为止。小华从A地骑摩托车到B地的途中,共追上小明多少次?

分析与解

设C地为小明与小华第一次相遇的地方,D地为二人第一次相遇后,小华从A地骑摩托车返回B地途中,第一次追上小华的地方(如图54)。

由题意可知,小明从A到C骑自行车用了60分钟。再从C到D又骑行了20分钟。因为6020=3,所以A、C间的路程是C、D间路程的3倍。

二人第一次相遇后,小明骑自行车的路程是CD,而小华骑摩托车从C到A,再从A到D追上小明,共行了2个A、C间的路程与一个C、D间路程,即C、D间路程的32+1=7倍。因此得出,小华骑摩托车的速度是小明骑自行车速度的7倍。

小明从A地到B地,骑自行车行了1个A、B间的全程,小华骑摩托车则行了7个A、B间的全程。在这7个A、B间的路程中,有4次是从B地到A地,有3次是从A地到B地的。小华每行1个从A到B的全程,必然追上小明1次,因此,小华骑摩托车从A地到B地的途中,共追上小明3次。

答:小华骑摩托车从A地到B地的途中,共追上小明3次。

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
大家都在看

分类
  • 级别
  • 年级
  • 类别
  • 版本
  • 上下册
学习阶段
小学
初中
高中
不限
年级
一年级 二年级
三年级 四年级
五年级 六年级
初一 初二
初三 高一
高二 高三
小考 中考
高考
不限
类别
数学教案
数学课件
数学试题
不限
版本
人教版 苏教版
北师版 冀教版
西师版 浙教版
青岛版 北京版
华师大版 湘教版
鲁教版 苏科版
沪教版 新课标A版
新课标B版 上海教育版
部编版
不限
上下册
上册
下册
不限