2016-10-25
收藏
平面几何作图限制只能用直尺、圆规,而这里所谓的直尺是指没有刻度只能画直线的尺。用直尺与圆规当然可以做出许多种之图形,但有些图形如正七边形、正九边形就做不出来。有些问题看起来好像很简单,但真正做出来却很困难,这些问题之中最有名的就是所谓的三大问题。
几何三大问题是:
1.化圆为方-求作一正方形使其面积等於一已知圆;
2.三等分任意角;
3.倍立方-求作一立方体使其体积是一已知立方体的二倍。
圆与正方形都是常见的几何图形,但如何作一个正方形和已知圆等面积呢?若已知圆的半径为1则其面积为π(1)2=π,所以化圆为方的问题等於去求一正方形其面积为π,也就是用尺规做出长度为π1/2的线段(或者是π的线段)。
三大问题的第二个是三等分一个角的问题。对於某些角如90。、180。三等分并不难,但是否所有角都可以三等分呢?例如60。,若能三等分则可以做出20。的角,那麽正18边形及正九边形也都可以做出来了(注:圆内接一正十八边形每一边所对的圆周角为360。/18=20。)。其实三等分角的问题是由求作正多边形这一类问题所引起来的。
第三个问题是倍立方。埃拉托塞尼(公元前276年~公元前195年)曾经记述一个神话提到说有一个先知者得到神谕必须将立方形的祭坛的体积加倍,有人主张将每边长加倍,但我们都知道那是错误的,因为体积已经变成原来的8倍。
这些问题困扰数学家一千多年都不得其解,而实际上这三大问题都不可能用直尺圆规经有限步骤可解决的。
1637年笛卡儿创建解析几何以後,许多几何问题都可以转化为代数问题来研究。1837年旺策尔(Wantzel)给出三等分任一角及倍立方不可能用尺规作图的证明。1882年林得曼(Linderman)也证明了π的超越性(即π不为任何整数系数多次式的根),化圆为方的不可能性也得以确立。
转换分析问题角度加强数学思维训练
七年级下学期数学期末考试测试卷
《小数的性质》说课设计
要重视小学生学习能力的培养
初一数学下册期末知识点复习
数学语言在教学中的作用
如何培养学生的口算能力
小学数学教学应循序渐进
数学课堂教学推进素质教育的几点思考
努力创造适合每个儿童的小学数学教育
口算训练教学点滴
试谈转化数学学习后进生的策略
课堂练习的类型与设计
浅谈思考题解题策略
对小数性质表述的商榷
“平行四边形的面积”教学设计与评析
优化数学教学教师“导”在何处
小学生解答复杂应用题的困难原因分析
初学因式分解的“四个注意”
关于表内乘除法口算教学的研究
从一个土豆大小谈起
《亿以内数的读法和写法》单元教学建议
对开设数学活动课的思索
小学数学课堂教学中“新知”引入七法
浅谈小学数学概念教学
我国幼儿园数学教育改革的回顾与思考
小学数学引导法教学例谈
鲁教版初一下学期数学期末模拟练习题
1998年全国小学数学毕业考试命题评析
解析2016高考数学试题:突出理性思维,考查实际应用
小学 |
初中 |
高中 |
不限 |
一年级 | 二年级 |
三年级 | 四年级 |
五年级 | 六年级 |
初一 | 初二 |
初三 | 高一 |
高二 | 高三 |
小考 | 中考 |
高考 |
不限 |
数学教案 |
数学课件 |
数学试题 |
不限 |
人教版 | 苏教版 |
北师版 | 冀教版 |
西师版 | 浙教版 |
青岛版 | 北京版 |
华师大版 | 湘教版 |
鲁教版 | 苏科版 |
沪教版 | 新课标A版 |
新课标B版 | 上海教育版 |
部编版 |
不限 |
上册 |
下册 |
不限 |