八年级数学教学设计:二次根式的混合运算2-查字典数学网
数学八年级数学教学设计:二...
首页>教学经验>试卷分析>八年级数学...

八年级数学教学设计:二次根式的混合运算2

2016-10-25

一、教学目标

1.理解分母有理化与除法的关系.

2.掌握二次根式的分母有理化.

3.通过二次根式的分母有理化,培养学生的运算能力.

4.通过学习分母有理化与除法的关系,向学生渗透转化的数学思想

二、教学设计

小结、归纳、提高

三、重点、难点解决办法

1.教学重点:分母有理化.

2.教学难点:分母有理化的技巧.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、多媒体

六、师生互动活动设计

复习小结,归纳整理,应用提高,以学生活动为主

七、教学过程

【复习提问】

二次根式混合运算的步骤、运算顺序、互为有理化因式.

例1 说出下列算式的运算步骤和顺序:

(1) (先乘除,后加减). (2) (有括号,先去括号;不宜先进行括号内的运算). (3)辨别有理化因式:

有理化因式: … 不是有理化因式: … 化简一个式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依据分式的基本性质).

例如, 等式子的化简,如果分母是两个二次根式的和,应该怎样化简?

引入新课题.

【引入新课】

化简式子 ,乘以什么样的式子,分母中的根式符号可去掉,结论是分子与分母要同乘以 的有理化因式,而这个式子就是 ,从而可将式子化简. 例2 把下列各式的分母有理化:

(1) ; (2) ; (3) 解:略.

注:通过例题的讲解,使学生理解和掌握化简的步骤、关键问题、化简的依据.式子的化简,若分子与分母可分解因式,则可先分解因式,再约分,使化简变得简单.

(二)随堂练习

1.把下列各式的分母有理化:

(1) ; (2) ; (3) ; (4) . 解:(1) . (2) . 另解: . (3)

. 另解: . 通过以上例题和练习题,可以看出,有关二次根式的除法,可先写成分式的形式,然后通过分母有理化进行运算,例如:

,现将分母有理化,就可以了. ,学生易发生如下错误,将式子变形为 ,而正确的做法是 . 2.计算:

(1) ; (2) ; (3) . 解:(1) . (2) . (3) . (三)小结

1.强调二次根式混

点击显示
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •