求角的度数四法-查字典数学网
数学求角的度数四法
首页>学习园地>名师指点>求角的度数四法

求角的度数四法

2013-07-04

在与三角形有关的角时,同学们会遇到许多求角的大小的问题,其中有些题目看似简单,却很难入手,有些题目因思考不全面而造成漏解。怎么办?要知道,思想是的灵魂,是解决问题的金钥匙。本文就谈谈数学思想在求解角的度数问题中的运用,希望对同学们解题有所帮助。

1、整体法

例1 如图1,若点P为△ABC中∠ABC、∠ACB的角平分线的交点,求∠BPC∠A的度数。

图1

分析:解本题的关键在于从整体着眼,利用∠PBC+∠PCB建立∠A和∠BPC的联系。

解:∵∠PBC=∠ABC

∠PCB=∠ACB

∠BPC=180°-(∠PBC+∠PCB)

∴∠BPC-∠A

2、方程法

例2 如图2,在△ABC中,∠A:∠ABC:∠ACB=3:4:5,BD、CE分别是AC、AB边上的高,BD、CE相交于点H,求∠BHC的度数。

图2

分析:根据三角形的内角和定理,结合已知条件可先求出∠A、∠ABC、∠ACB的度数。在△BHC中,还需求出∠DBC和∠ECB的度数。

解:设∠A=3x度,则∠ABC=4x度,∠ACB=5x度。

所以。

解得x=15,即∠A=45°,∠ABC=60°,∠ACB=75°

在△DBC中,由∠BDC=90°,可知△DBC是直角三角形。

所以∠DBC=90°-75°=15°

在△ECB中,由∠CEB=90°,可知△ECB是直角三角形。

所以∠ECB=90°-60°=30°

在△BHC中,∠BHC=180°-15°-30°=135°

点评:由于∠A:∠ABC:∠ACB=3:4:5,设∠A=3x度,则∠ABC=4x度,∠ACB=5x度。再根据三角形内角和定理,就可以得到一个关于x的方程,即。从而求得∠A、∠ABC、∠ACB的度数。这种方法会经常用到,要注意掌握。

3、分类法

例3 已知非直角三角形ABC中,∠A=45°,高BD和高CE所在的直线相交于点H,求∠BHC的度数。

分析:三角形的形状不同,高线的交点的位置也不同。当三角形为锐角三角形时,高的交点在其内部;当三角形为钝角三角形时,高的交点在其外部。故应分两种情况讨论。

解:

(1)设△ABC为锐角三角形(如图3)。

图3

∴BD、CE是△ABC的高,∠A=45°,

∴∠ABD=90°-45°=45°

∴∠BHC=∠ABH+∠BEH

=45°+90°

=135°

(2)设△ABC为钝角三角形(如图4)

图4

∴H是△ABC的两条高所在直线的交点,∠A=45°,

∴∠DCH=∠ECA

=90°-45°

=45°

∴∠BHC=90°-∠DCH

=90°-45°

初中政治 =45°

综上可知,∠BHC的大小是135°或45°。

4、构造法

例4 如图5,BE是∠ABD的平分线,CF是∠ACD的平分线,BE与CF交于点G,若∠BDC=140°,∠BGC=110°,求∠A的度数。

图5

分析:若把∠BDC、∠BGC、∠A看成是三角形的内角,则必须构造三角形。结合图形不难发现,连接BC即可。

解:连接BC。

∵∠DBC+∠DCB+∠BDC=180°

∠BDC=140°

∴∠DBC+∠DCB=40°

又∠BGC+∠GBC+∠GCB=180°

∠BGC=110°

∴∠GBD+∠GCD=180°-110°-40°=30°

∵∠GBD∠ABD

∠GCD=∠ACD

∴∠ABD+∠ACD=2(∠GBD+∠GCD)=60°

∴∠A=180°-(∠ABC+∠ACB)

=180°?60°?40°

=80°。

点评:此题还可延长CD交BE于一点,请同学们尝试一下这种解法。在进行与角有关的计算时,为了能使用三角形内角和定理及内角与外角的关系,常常需要构造三角形或三角形的外角,这时需要添加某些线段或延长某些线段。

点击显示
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •