高一下册数学直线的方程教学计划表-查字典数学网
数学高一下册数学直线的方程...
首页>数学教研>课题研究>高一下册数...

高一下册数学直线的方程教学计划表

2016-03-31

求两条直线的交点,只需把这两个二元一次方程联立求解,下面是查字典数学网整理的直线的方程教学计划表,希望对大家学习有帮助。

教学目标:

(1)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化.

(2)理解直线与二元一次方程的关系及其证明

(3)培养学生抽象概括能力、分类讨论能力、逆向思维的习惯和形成特殊与一般辩证统一的观点.

教学重点、难点:直线方程的一般式.直线与二元一次方程(不同时为0)的对应关系及其证明.

教学用具:计算机

教学方法:启发引导法,讨论法

教学过程:

下面给出教学实施过程设计的简要思路:

教学设计思路:

(一)引入的设计

前边学习了如何根据所给条件求出直线方程的方法,看下面问题:

问:说出过点

(2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?

答:直线方程是

,属于二元一次方程,因为未知数有两个,它们的最高次数为一次.

肯定学生回答,并纠正学生中不规范的表述.再看一个问题:

问:求出过点

的直线的方程,并观察方程属于哪一类,为什么?

答:直线方程是

(或其它形式),也属于二元一次方程,因为未知数有两个,它们的最高次数为一次.

肯定学生回答后强调也是二元一次方程,都是因为未知数有两个,它们的最高次数为一次.

启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论.

学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:

【问题1】任意直线的方程都是二元一次方程吗?

(二)本节主体内容教学的设计

这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路.

学生或独立研究,或合作研究,教师巡视指导.

经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案:

思路一:

思路二:

教师组织评价,确定最优方案(其它待课下研究)如下:

按斜率是否存在,任意直线的位置有两种可能,即斜率存在或不存在.

存在时,直线的截距也一定存在,直线的方程可表示为,它是二元一次方程.

不存在时,直线的方程可表示为形式的方程,它是二元一次方程吗?

学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:

平面直角坐标系中直线上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如

的二元一次方程是合理的.

综合两种情况,我们得出如下结论:

在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于的二元一次方程.

至此,我们的问题1就解决了.简单点说就是:直线方程都是二元一次方程.而且这个方程一定可以表示成的形式,准确地说应该是要么形如

这样,要么形如

这样的方程.

同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?

学生们不难得出:二者可以概括为统一的形式.

这样上边的结论可以表述如下:

在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如

(其中不同时为0)的二元一次方程.

启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢?

【问题2】任何形如(其中不同时为0)的二元一次方程都表示一条直线吗?

不难看出上边的结论只是直线与方程相互关系的一个方面,这个问题是它的另一方面.这是显然的吗?不是,因此也需要像刚才一样认真地研究,得到明确的结论.那么如何研究呢?

师生共同讨论,评价不同思路,达成共识:

回顾上边解决问题的思路,发现原路返回就是非常好的思路,即方程

(其中不同时为0)系数是否为0恰好对应斜率是否存在,即

(1)当时,方程可化为

这是表示斜率为、在轴上的截距为的直线.

(2)当时,由于不同时为0,必有,方程可化为这表示一条与轴垂直的直线.

因此,得到结论:

在平面直角坐标系中,任何形如(其中不同时为0)的二元一次方程都表示一条直线.

为方便,我们把(其中不同时为0)称作直线方程的一般式是合理的.

【动画演示】

演示直线各参数.gsp文件,体会任何二元一次方程都表示一条直线.

至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系.

(三)练习巩固、总结提高、板书和作业等环节的设计在此从略

高一下册数学直线的方程教学计划表分享到这里,更多内容请关注高一数学教学计划栏目。

点击显示
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •