教学目标:
1、使学生知道近似数的含义,并会根据四舍五入的方法省略一个数的尾数求近似数,会用万或亿作单位求一个大数的近似数。
2、在认识和理解近似数的过程中培养学生的估计意识,发展学生的数感。
3、通过选择社会、自然和科学知识中的相关数据信息,拓展学生的知识面,激发学生学习数学的情感,体现数学的文化价值。
教学难点:根据四舍五入的方法省略一个数的尾数求近似数,会用万或亿作单位求一个大数的近似数。
教学过程:
一、认识近似数
1、谈话:知道我们班共有多少人?你估计一我们教室的占地面积是多少平方米?根据学生的回答进行相应板书。
2、指出:在生活中我们有时不用精确的数表示,而只用一个和它接近的数来表示,这样的数叫近似数。(板书:精确数 近似数)
3、读一读:你能找出下面两句话中的近似数吗?
4、想一想:在这些为什么要用近似数来表示?(不能用精确数表示或没有必要用精确数来表示)
二、探索求一个数的近似数的方法
1、教学求一个数的近似数的方法
(1)谈话:同学们能正确地判断近似数,那如何求一个数的近似数呢?
(2)出示:2004年某市年末全市人口情况统计表,说说从表中你知道些什么?
(3)估计:男性和女性人数各接近多少万?尝试把它写出来。
(4)交流:说说你是怎样想的?(男性接近48万,因为千位上是4,不满一半。女性接近49万,因为千位上超过一半)
(5)阅读:组织学生阅读四舍五入法的相关资料。
(6)交流:什么是尾数?四舍五入是什么意思?如果省略万后面的尾数是对哪一位进行四舍五入呢?省略亿后面的尾数呢?十万位呢?
2、教学用万或亿作单位的数
(1)谈话:其实近似数了写成1单位的数,也可以写成万或亿作单位的数。
(2)尝试:请能用万作单位写出男女性人数的近似数吗?你更喜欢用哪种方法来表示近似数。
(3)完成试一试:只出示两个数和要求。
(4)比较:我们用两种不同方式来表示一个数的近似数,它们有什么相同地方与不同地方?(相同:都用四舍五入的方法来求近似数。不同:前者省略的尾数用0来占位,而后者省略的尾数用万或亿来作单位)
三、巩固练习
1、先读出下面横线上的数,再说出哪些是近似数
实验小学共有学生1439人。
到2004年末,全国共有医院、卫生院约62000个。
沪宁高速公路全长约274千米,投资近62亿元。
学生在说哪个是近似数的时候,要让学生说清楚自己为什么会那样判断。
2、省略下面各数最高位后面的尾数,再写出近似数。
705 385 1994 3208 9775
3、用万作单位写出下面各数的近似数
73986 539180 6995400 10002000
4、用亿作单位写出下面各数的近似数
8340000000 20680000000 980000000
5、□中可以填哪些数字?
9□87510万 39□000000039亿
注意后面一个问题,可能会有学生说0~4要引导学生发现:0是不合适的。
四、全课总结
今天这堂课你有什么收获?
【反思】:
这节课是是学生在认识含有万级和个级的数及含有亿级和万级数的基础上进行的,通过例1认识生活中近似数,通过例2和试一试让学生探索求一个数的近似数的方法。想想做做为学生提供了社会、自然等数据信息,通过练习巩固求近似的方法。激发学生数学学习的兴趣。
1、联系生活,理解近似数的含义
首先我让学生说一说生活中的一些数,感受到生活中存在精确数和近似数。然后让学生读一读例题中的一些数据,体会到社会生活、自然和科学知识中有时也用近似数来表示。最后让学生想一想,为什么这些数要用近似数来表示,感受到学习近似数的必要性,也激发了学生学习的动机。
2、把握资源,探索求近似数的方法
当出示2000年末全市人口统计图,让学生写一写男性和女性人数各接近多少万?学生出现了三种情况:一是写成480000和490000;二是写成48万和49万;三是都写成5000000。(对于前面的两种情况我有是估计到的,后面一种情况出乎我的意料之外。)但我觉得是学生探索近似数的一个很好的素材,由是我改变了我原先的教学预设,进行如下环节的教学:
师:如果把男女性的人数的近似数写成48万和49万,你们同意吗?(同意)请同学们在自备本上写一写。(板书48420448万 48668549万)
师:与前面的写法相比较,这样写你有什么体会?(简单)两种写法有什么不同?
生:计算单位不同,一个是以1作单位,一个是以万作单位。
师:你也能用万或亿作单位写出下面两个数的近似数吗?(学生练习)
师:那如果求男女性人数的近似数写成这样的形式(指着第三种写法)你们同意吗?(不同意)这样吧,我们听听作者的想法。
生:我是把万位进行四舍五入后就是500000。
师:刚才我们发现,无论是以1作单位,还是以万或亿作单位。无论是省略万后面的尾数,还是省略十万位后面的尾数,都是对后面一位进行四舍五入。
这样的素材来自于学生,对于我们的学生来说是感兴趣的。通过这三种写法的交流,逐步掌握求近似数的方法,并让学生体会由于精确程度不同,同一个数的近似数可以是不同的数。
但是今天这堂课我还是没有来的及,想想做做只完成了第1和第2题。其它的只能留到课后。