把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下:
1、提公因法
如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1、分解因式x-2x-x(2003淮安市中考题)
x-2x-x=x(x-2x-1)
2、应用公式法
由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
例2、分解因式a+4ab+4b(2003南通市中考题)
解:a+4ab+4b=(a+2b)
3、分组分解法
要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)
例3、分解因式m+5n-mn-5m
解:m+5n-mn-5m=m-5m-mn+5n
=(m-5m)+(-mn+5n)
=m(m-5)-n(m-5)
=(m-5)(m-n)
4、十字相乘法
对于mx+px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)
例4、分解因式7x-19x-6
分析:1-3
72
2-21=-19
解:7x-19x-6=(7x+2)(x-3)
1 234>>尾页