高考数学复习简单的线性规划问题专题训练(含答案)-查字典数学网
数学高考数学复习简单的线性...
首页>学习园地>题型归纳>高考数学复...

高考数学复习简单的线性规划问题专题训练(含答案)

2015-12-01

线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支。以下是查字典数学网整理的简单的线性规划问题专题训练,请考生练习。

一、填空题

1.(2014广东高考改编)若变量x,y满足约束条件,则z=2x+y的最大值等于________.

[解析] 作出约束条件下的可行域如图(阴影部分),当直线y=-2x+z经过点A(4,2)时,z取最大值为10.

[答案] 10

2.(2014扬州调研)已知x,y满足约束条件则z=3x+4y的最小值是________.

[解析] 可行区域如图所示.

在P处取到最小值-17.5.

[答案] -17.5

3.已知实数x,y满足若z=y-ax取得最大值时的最优解(x,y)有无数个,则a=________.

[解析] 依题意,在坐标平面内画出题中的不等式组表示的平面区域,如图所示.要使z=y-ax取得最大值时的最优解(x,y)有无数个,则直线z=y-ax必平行于直线y-x+1=0,于是有a=1.

[答案] 1

4.(2013山东高考改编)在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则直线OM斜率的最小值为________.

[解析] 线性约束条件表示的平面区域如图所示(阴影部分).

得A(3,-1).

当M点与A重合时,OM的斜率最小,kOM=-.

[答案] -

5.(2013陕西高考改编)若点(x,y)位于曲线y=|x|与y=2所围成的封闭区域内,则2x-y的最小值是________.

[解析] 曲线y=|x|与y=2所围成的封闭区域如图阴影部分所示.

当直线l:y=2x向左平移时,(2x-y)的值在逐渐变小,当l通过点A(-2,2)时,(2x-y)min=-6.

[答案] -6

6.已知点P(x,y)满足定点为A(2,0),则||sinAOP(O为坐标原点)的最大值为________.

[解析] 可行域如图阴影部分所示,A(2,0)在x正半轴上,所以||sinAOP即为P点纵坐标.

当P位于点B时,其纵坐标取得最大值.

[答案]

7.(2014兴化安丰中学检测)已知不等式组表示的平面区域S的面积为4,若点P(x,y)S,则z=2x+y的最大值为________.

[解析] 由约束条件可作图如下,得S=a2a=a2,则a2=4,a=2,故图中点C(2,2),平移直线得当过点C(2,2)时zmax=22+2=6.

[答案] 6

8.(2014江西高考)x,yR,若|x|+|y|+|x-1|+|y-1|2,则x+y的取值范围为________.

[解析] 由绝对值的几何意义知,|x|+|x-1|是数轴上的点x到原点和点1的距离之和,所以|x|+|x-1|1,当且仅当x[0,1]时取=.

同理|y|+|y-1|1,当且仅当y[0,1]时取=.

|x|+|y|+|x-1|+|y-1|2.

而|x|+|y|+|x-1|+|y-1|2,

|x|+|y|+|x-1|+|y-1|=2,

此时,x[0,1],y[0,1],(x+y)[0,2].

[答案] [0,2]

二、解答题

9.(2012四川高考改编)某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克,B原料2千克;生产乙产品1桶需耗A原料2千克,B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A、B原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,试求公司共可获得的最大利润.

[解] 设生产甲产品x桶,乙产品y桶,每天利润为z元,则

且z=300x+400y.

作出可行域,如图阴影部分所示.

作直线300x+400y=0,向右上平移,过点A时,

z=300x+400y取最大值,

由得A(4,4),

zmax=3004+4004=2 800.

故公司共可获得的最大利润为2 800元.

10.(2012安徽高考改编)已知实数x,y满足约束条件

(1)求z=x-y的最小值和最大值;

(2)若z=,求z的取值范围.

[解] 作约束条件

满足的可行域,如图所示为ABC及其内部.

联立得A(1,1).

解方程组得点B(0,3).

(1)由z=x-y,得y=x-z.

平移直线x-y=0,则当其过点B(0,3)时,截距-z最大,即z最小;当过点A(1,1)时,截距-z最小,即z最大.

zmin=0-3=-3;zmax=1-1=0.

(2)过O(0,0)作直线x+2y=3的垂线l交于点N.

观察可行域知,可行域内的点B、N到原点的距离分别达到最大与最小.

又|ON|==,|OB|=3.

z的取值范围是.

简单的线性规划问题专题训练及答案的所有内容就是这些,查字典数学网希望对考生复习数学有帮助。

点击显示
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •