2016届临川一中高三数学10月份月考试卷(附答案)-查字典数学网
数学2016届临川一中高三...
首页>学习园地>题型归纳>2016届...

2016届临川一中高三数学10月份月考试卷(附答案)

2015-12-01

2016年考生进行数学复习离不开做题,查字典数学网整理了高三数学10月份月考试卷,请考生及时练习。

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,在答题卷相应题目的答题区域内作答.

1.设 ,则 ( )

A. B. C. D.

2.已知函数 定义域是 ,则 的定义域( )

A. B. C. D.

3.命题存在 ,为假命题是命题 的( )

A.充要条件B.必要不充分条件

C.充分不必要条件D.既不充分也不必要条件

4.若幂函数 的图像经过点 ,则它在点A处的 切线方程是( )

A. B.

C. D.

5.将函数 图象上各点的横坐标伸长到原的2倍,再向左平移 个单位,

纵坐标不变,所得函数图象的一条对称轴的方程是( )

A B. C D

6.函数 的图象大致是( )

7.已知定义在R上的偶函数, 在 时, ,若 ,则a的取值范围是( )

A. B. C. D.

8.下列四个命题:

○1x(0, +), ( )x○2x(0, 1), log x

○3x(0, +), ( )x○4x(0, ), ( )x

其中真命题是( )

A.○1○3B.○2○3C.○2○4D.○3○4

第Ⅱ卷(非选择题 共90分)

二、填空题:本大题共4小题,每小题5分,共20分.在答题卷相应题目的答题区域内作答.

13.若函数 在其定义域上为奇函数,则实数 .

14.定义在R上的奇函数 满足 则 = .

15. 已知命题 ,命题 ,若非 是非 的必要不充分条件,那么实数 的取值范围是 .

16.对于函数 ,有下列4个命题:

①任取 ,都有 恒成立;

② ,对于一切 恒成立;

③函数 有3个零点;

④对任意 ,不等式 恒成立.

则其中所有真命题的序号是 .

三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.在答题卷相应题目的答题区域内作答.

17.(本小题满分10分)已知集合 , .

(1)分别求 , ;

(2)已知集合 ,若 ,求实数 的取值集合.

18.(本小题满分12分)如图,在平面直角坐标系 中,点 在单位圆 上, ,且 .

(1)若 ,求 的值;

(2)若 也是单位圆 上的点,且 .过点 分别做 轴的垂线,垂足为 ,记 的面积为 , 的面积为 .设 ,求函数 的最大值.

19.(本小题满分12分)已知函数 ( 、 为常数).

(1)若 ,解不等式 ;

(2)若 ,当 时, 恒成立,求 的取值范围.

20.(本小题满分12分)如图甲,⊙ 的直径 ,圆上两点 在直径 的两侧,使 , .沿直径 折起,使两个半圆所在的平面互相垂直(如图乙), 为 的中点, 为 的中点. 为 上的动点,根据图乙解答下列各题:

(1)求点 到平面 的距离;

(2)在 弧上是否存在一点 ,使得 ∥平面 ?若存在,试确定点 的位置;若不存在,请说明理由.

21.(本题满分12分)如图,O为坐标原点,点F为抛物线C1: 的焦点,且抛物线C1上点P处的切线与圆C2: 相切于点Q.

(Ⅰ)当直线PQ的方程为 时,求抛物线C1的方程;

(Ⅱ)当正数 变化时,记S1 ,S2分别为△FPQ,△FOQ的面积,求 的最小值.

22.(本小题满分12分)设 是定义在 上的奇函数,函数 与 的图象关于 轴对称,且当 时, .

(1)求函数 的解析式;

(2)若对于区间 上任意的 ,都有 成立,求实数 的取值范围.

参考答案

一、选择题(每小题5分,共60分)

题号123456789101112

答案BDACAABCBDAB

二、填空题(每小题5分,共20分)

13. 14. 15. 16.○1○3○4

三、解答题(共70分)

17. (1) 即 , , ,

,即 , , ;

(2)由(1)知 ,当

当C为空集时,

当C为非空集合时,可得

综上所述

18. (1)由三角函数的定义有 ∵ ,

.

(2)由 ,得 .

由定义得 , ,又 ,于是,

=

= = =

,即 .

19. (1)∵ , , , ,

∵ , ,等价于 ,

① ,即 时,不等式的解集为: ,

②当 ,即 时,不等式的解集为: ,

③当 ,即 时,不等式的解集为: ,

(2)∵ , , (※)

显然 ,易知当 时,不等式(※)显然成立;

由 时不等式恒成立,当 时, ,

∵ , ,

故 . 综上所述, .

20. (1) 中, ,且 , .

又 是 的中点, .又∵ ,且 ,

. 即为点 到 的距离.

又 .点 到 的距离为 .

(2) 弧上存在一点 ,满足 ,使得 ∥ . 8

理由如下:

连结 ,则 中, 为 的中点. ∥ .

又∵ , , ∥

∵ ,且 为 弧的中点, . ∥ .

又 , , ∥ .

且 , . ∥ .

又 ∥ .

21. (Ⅰ)设点 ,由 得, ,求导 , 2分

因为直线PQ的斜率为1,所以 且 ,解得 ,

所以抛物线C1 的方程为 .

(Ⅱ)因为点P处的切线方程为: ,即 ,

根据切线又与圆相切,得 ,即 ,化简得 ,

由 ,得 ,由方程组 ,解得 ,

所以 ,

点 到切线PQ的距离是 ,

所以 , ,

所以 ,

当且仅当 时取=号,即 ,此时, ,

所以 的最小值为 .

22. (1) ∵ 的图象与 的图象关于y轴对称,

的图象上任意一点 关于 轴对称的对称点 在 的图象上.

当 时, ,则

∵ 为 上的奇函数,则 .

当 时, ,

(1)由已知, .

①若 在 恒成立,则 .

此时, , 在 上单调递减, ,

的值域为 与 矛盾.

②当 时,令 ,

当 时, , 单调递减,

当 时, , 单调递增,

.

由 ,得 .

综上所述,实数 的取值范围为

高三数学10月份月考试卷的内容就是这些,更多精彩内容请考生持续关注查字典数学网。

点击显示
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •