黄冈市2012年中考考试说明:空间与图形-查字典数学网
数学黄冈市2012年中考考...
首页>数学教研>新课程标准>黄冈市20...

黄冈市2012年中考考试说明:空间与图形

2012-03-01

空间与图形

(一)图形的认识

⒈点、线、面、角

考试内容:

点、线、面、角、角平分线及其性质。

考试要求:

(1)在实际背景中认识,理解点、线、面、角的概念。

(2)会比较角的大小,能估计一个角的大小,会计算角度的和与差,认识度、分、秒,会进行简单换算。

(3)掌握角平分线性质定理及逆定理。

⒉相交线与平行线

考试内容:

补角,余角,对顶角,垂线,点到直线的距离,线段垂直平分线及其性质,平行线,平行线之间的距离,两直线平行的判定及性质。

考试要求:

(1)了解补角、余角、对顶角的概念,知道等角的余角相等、等角的补角相等、对顶角相等。

(2)了解垂线、垂线段等概念,会用三角尺或量角器过一点画一条直线的垂线。了解垂线段最短的性质,理解点到直线距离的意义。

(3)知道过一点有且仅有一条直线垂直于已知直线。

(4)掌握线段垂直平分线性质定理及逆定理。

(5)了解平行线的概念及平行线基本性质。

(6)掌握两直线平行的判定及性质。

(7)会用三角尺和直尺过已知直线外一点画这条直线的平行线。

(8)体会两条平行线之间距离的意义,会度量两条平行线之间的距离。

<>

⒊三角形

考试内容:

三角形,三角形的角平分线、中线和高,三角形中位线,全等三角形、全等三角形的判定,等腰三角形的性质及判定。等边三角形的性质及判定。直角三角形的性质及判定。勾股定理。勾股定理的逆定理。

考试要求:

(1)了解三角形有关概念(内角、外角、中线、高、角平分线),会画出任意三角形的角平分线、中线和高。

(2)掌握三角形中位线定理。

(3)了解全等三角形的概念,掌握两个三角形全等的判定定理。

(4)了解等腰三角形、直角三角形、等边三角形的有关概念,掌握等腰三角形、直角三角形、等边三角形的性质和判定定理。

(5)掌握勾股定理,会运用勾股定理解决简单问题;会用勾股定理的逆定理判定直角三角形。

⒋四边形

考试内容:

多边形,多边形的内角和与外角和,正多边形,平行四边形、矩形、菱形、正方形、梯形的概念和性质,平面图形的镶嵌。

考试要求:

(1)了解多边形的内角和与外角和公式,了解正多边形的概念。

(2)掌握平行四边形、矩形、菱形、正方形、梯形的概念和性质,了解它们之间的关系;了解四边形的不稳定性。

(3)掌握平行四边形、矩形、菱形、正方形、等腰梯形的有关性质和判定定理。

(4)了解线段、矩形、平行四边形、三角形的重心及物理意义(如一根均匀木棒、一块均匀的矩形木板的重心)。

(5)通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计。

⒌圆

考试内容:

圆,弧、弦、圆心角的关系,点与圆、直线与圆以及圆与圆的位置关系,圆周角与圆心角的关系,三角形的内心和外心,切线的性质和判定,弧长,扇形的面积,圆锥的侧面积、全面积。

考试要求:

(1)理解圆及其有关概念,了解弧、弦、圆心角的关系,了解点与圆、直线与圆以及圆与圆的位置关系。

(2)了解圆的性质,了解圆周角与圆心角的关系、直径所对圆周角的特征。

(3)了解三角形的内心和外心。

(4)了解切线的概念、切线与过切点的半径之间的关系;能判定一条直线是否为圆的切线,会过圆上一点画圆的切线。

(5)会计算弧长及扇形的面积,会计算圆锥的侧面积和全面积。

<>

⒍尺规作图

考试内容:

基本作图,利用基本作图作三角形,过一点、两点和不在同一直线上的三点作圆。

考试要求:

(1)能完成以下基本作图:作一条线段等于已知线段;作一个角等于已知角;作角的平分线;作线段的垂直平分线。

(2)能利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形。

(3)能过一点、两点和不在同一直线上的三点作圆。

(4)了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明)。

⒎视图与投影

考试内容:

简单几何体的三视图,直棱柱、圆锥的侧面展开图,视点、视角,盲区,投影。

考试要求:

(1)会画简单几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图、左视图、俯视图)的示意图,会判断简单物体的三视图,能根据三视图描述基本几何体或实物原型。

(2)了解直棱柱、圆锥的侧面展开图,能根据展开图判断和制作立体模型

(3)了解基本几何体与其三视图、展开图(球除外)之间的关系;知道这种关系在现实生活中的应用(如物体的包装)。

(4)了解并欣赏一些有趣的图形(如雪花曲线、莫比乌斯带)。

(5)知道物体阴影的形成,并能根据光线的方向辨认实物的阴影(如在阳光或灯光下,观察手的阴影或人的身影)。

(6)了解视点、视角及盲区的含义,能在简单的平面图和立体图中表示。

(7)了解中心投影和平行投影。

(二)图形与变换

1.图形的轴对称、图形的平移、图形的旋转

考试内容:

轴对称、平移、旋转。

考试要求:

(1)通过具体实例认识轴对称(或平移、旋转),探索它们的基本性质;

(2)能够按要求作出简单平面图形经过轴对称(或平移、旋转)后的图形,能作出简单平面图形经过一次或两次轴对称后的图形;

(3)探索基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称(或平移、旋转)的性质及其相关性质。

(4)利用轴对称(或平移、旋转)及其组合进行图案设计;认识和欣赏轴对称(或平移、旋转)在现实生活中的应用。

⒉图形的相似

考试内容:

比例的基本性质,线段的比,成比例线段,图形的相似及性质,三角形相似的条件,图形的位似,锐角三角函数,

30、

4

5、60角的三角函数值。

<>

考试要求:

(1)了解比例的基本性质,了解线段的比、成比例线段,通过实例了解黄金分割。

(2)通过实例认识图形的相似,了解相似图形的性质,知道相似多边形的对应角相等,对应边成比例,面积的比等于对应边比的平方。

(3)了解两个三角形相似的概念,掌握两个三角形相似的条件。

(4)了解图形的位似,能够利用位似将一个图形放大或缩小。

(5)通过实例了解物体的相似,利用图形的相似解决一些实际问题(如利用相似测量旗杆的高度)。

(6)通过实例认识锐角三角函数(sinA,cosA,tanA),知道

30、

4

5、60角的三角函数值;会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的锐角.

(7)运用三角函数解决与直角三角形有关的简单实际问题。

(三)图形与坐标

考试内容:

平面直角坐标系。

考试要求:

(1)认识并能画出平面直角坐标系;在给定的直角坐标系中,会根据坐标描出点的位置、由点的位置写出它的坐标。

(2)能在方格纸上建立适当的直角坐标系,描述物体的位置。

(3)在同一直角坐标系中,感受图形变换后点的坐标的变化。

(4)灵活运用不同的方式确定物体的位置。

(四)图形与证明

⒈了解证明的含义

考试内容:

定义、命题、逆命题、定理,定理的证明,反证法。

考试要求:

(1)理解证明的必要性。

(2)通过具体的例子,了解定义、命题、定理的含义,会区分命题的条件(题设)和结论。

(3)结合具体例子,了解逆命题的概念,会识别两个互逆命题,并知道原命题成立其逆命题不一定成立。

(4)理解反例的作用,知道利用反例可以证明一个命题是错误的。

(5)通过实例,体会反证法的含义。

(6)掌握用综合法证明的格式,体会证明的过程要步步有据。

⒉掌握证明的依据

考试内容:

一条直线截两条平行直线所得的同位角相等;两条直线被第三条直线所截,若同位角相等,那么这两条直线平行;若两个三角形的两边及其夹角分别相等,则这两个三角形全等;两个三角形的两角及其夹边分别相等,则这两个三角形全等;两个三角形的三边分别相等,则这两个三角形全等;全等三角形的对应边、对应角分别相等。

考试要求:

运用以上6条“基本事实”作为证明命题的依据。

<>

⒊利用2中的基本事实证明下列定理

考试内容:

(1)平行线的性质定理(内错角相等、同旁内角互补)和判定定理(内错角相等或同旁内角互补,则两直线平行)。

(2)三角形的内角和定理及推论(三角形的外角等于不相邻的两内角的和,三角形的外角大于任何一个和它不相邻的内角)。

(3)直角三角形全等的判定定理。

(4)角平分线性质定理及逆定理;三角形的三条角平分线交于一点(内心).

(5)垂直平分线性质定理及逆定理;三角形的三边的垂直平分线交干一点(外心)。

(6)三角形中位线定理。

(7)等腰三角形、等边三角形、直角三角形的性质和判定定理。

(8)平行四边形、矩形、菱形、正方形、等腰梯形的性质和判定定理。

考试要求:

(1)会利用2中的基本事实证明上述命题。

(2)会利用上述定理证明新的命题。

(3)练习和考试中与证明有关的题目难度,应与上述所列的命题的论证难度相当。

⒋通过对欧几里得《原本》的介绍,感受几何的演绎体系对数学发展和人类文明的价值。

点击显示
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •