高一数学:指数与指数幂的运算训练题-查字典数学网
数学高一数学:指数与指数幂...
首页>学习园地>题型归纳>高一数学:...

高一数学:指数与指数幂的运算训练题

2017-05-11

高一数学:指数与指数幂的运算训练题 

1.将532写为根式,则正确的是()

A.352  B.35

C.532 D.53

解析:选D.532=53.

2.根式 1a1a(式中a>0)的分数指数幂形式为()

A.a-43 B.a43

C.a-34 D.a34

解析:选C.1a1a= a-1??a-1?12= a-32=(a-32)12=a-34.

3.?a-b?2+5?a-b?5的值是()

A.0 B.2(a-b)

C.0或2(a-b) D.a-b

解析:选C.当a-b≥0时,

原式=a-b+a-b=2(a-b);

当a-b<0时,原式=b-a+a-b=0.

4.计算:(π)0+2-2×(214)12=________.

解析:(π)0+2-2×(214)12=1+122×(94)12=1+14×32=118.

答案:118

1.下列各式正确的是()

A.?-3?2=-3 B.4a4=a

C.22=2 D.a0=1

解析:选C.根据根式的性质可知C正确.

4a4=a,a0=1条件为a≠0,故A,B,D错.

2.若(x-5)0有意义,则x的取值范围是()

A.x>5 B.x=5

C.x<5 D.x≠5

解析:选D.∵(x-5)0有意义,

∴x-5≠0,即x≠5.

3.若xy≠0,那么等式 4x2y3=-2xyy成立的条件是()

A.x>0,y>0 B.x>0,y<0

C.x<0 y="">0 D.x<0,y<0

解析:选C.由y可知y>0,又∵x2=x,

∴当x<0时,x2=-x.

4.计算?2n+1?2??12?2n+14n?8-2(n∈N*)的结果为()

A.164 B.22n+5

C.2n2-2n+6 D.(12)2n-7

解析:选D.?2n+1?2??12?2n+14n?8-2=22n+2?2-2n-1?22?n??23?-2=2122n-6=27-2n=(12)2n-7.

5.化简 23-610-43+22得()

A.3+2 B.2+3

C.1+22 D.1+23

解析:选A.原式= 23-610-4?2+1?

= 23-622-42+?2?2= 23-6?2-2?

= 9+62+2=3+2.X k b 1 . c o m

6.设a12-a-12=m,则a2+1a=()

A.m2-2 B.2-m2

C.m2+2 D.m2

解析:选C.将a12-a-12=m平方得(a12-a-12)2=m2,即a-2+a-1=m2,所以a+a-1=m2+2,即a+1a=m2+2?a2+1a=m2+2.

7.根式a-a化成分数指数幂是________.

解析:∵-a≥0,∴a≤0,

∴a-a=-?-a?2?-a?=-?-a?3=-(-a)32.

答案:-(-a)32

8.化简11+62+11-62=________.

解析: 11+62+11-62=?3+2?2+?3-2?2=3+2+(3-2)=6.

答案:6

9.化简(3+2)2010?(3-2)2011=________.

解析:(3+2)2010?(3-2)2011

=[(3+2)(3-2)]2010?(3-2)

=12010?(3-2)= 3-2.

答案:3-2

10.化简求值:

(1)0.064-13-(-18)0+1634+0.2512;

(2)a-1+b-1?ab?-1(a,b≠0).

解:(1)原式=(0.43)-13-1+(24)34+(0,学习计划.52)12

=0.4-1-1+8+12

=52+7+12=10.

(2)原式=1a+1b1ab=a+bab1ab=a+b.

11.已知x+y=12,xy=9,且x

解:x12-y12x12+y12=?x+y?-2?xy?12x-y.

∵x+y=12,xy=9,

则有(x-y)2=(x+y)2-4xy=108.

又x

代入原式可得结果为-33.

12.已知a2n=2+1,求a3n+a-3nan+a-n的值.

解:设an=t>0,则t2=2+1,a3n+a-3nan+a-n=t3+t-3t+t-1

=?t+t-1??t2-1+t-2?t+t-1=t2-1+t-2

=2+1-1+12+1=22-1.

点击显示
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •