一、高中数列基本公式:
1、一般数列的通项an与前n项和Sn的关系:an=
2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。
3、等差数列的前n项和公式:Sn=
Sn=
Sn=
当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。
4、等比数列的通项公式: an= a1 qn-1an= ak qn-k
(其中a1为首项、ak为已知的第k项,an≠0)
5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);
当q≠1时,Sn=
Sn=
三、高中数学中有关等差、等比数列的结论
1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等差数列。
2、等差数列{an}中,若m+n=p+q,则
3、等比数列{an}中,若m+n=p+q,则
4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等比数列。