韦达——符号代数的先驱-查字典数学网
数学韦达——符号代数的先驱
首页>数学杂谈>数学家故事>韦达——符号代数的先驱

韦达——符号代数的先驱

2015-05-19

韦达(FrancisVieta,1540~l603),1540年生于法国普瓦图的丰特奈一勒扎特。早年学法律,曾在巴黎裁判所任律师。后以律师身份在地方议会供职。1580年任那瓦尔的亨利亲王的枢密顾问。工作之余,进行许多数学研究。在法国与西班牙战争期间,他曾破译西班牙作战机密,首次崭露数学才能,但却遭西班牙宗教裁判所缺席判决处以焚烧致死的极刑,幸未能执行。1584~1589年间,由于政治原因,韦达变成平民。于是他更加专心于数学研究,有时竟能几昼夜不眠。他是一位人文主义者,主张复古的意识很强。他还自费印刷、发行自己的著作。l603年12月13日在巴黎逝世。

韦达最突出的贡献是在符号代数方面。他系统地研读了卡丹、塔泰格利亚、蓬贝利、斯蒂文以及丢番图的著作,并从这些名家、尤其是从丢番图的著作中,获取了使用字母、缩写代数的思想方法,主张用“分析”这个术语来概括当时代数的知识内容和方法,而不赞成从阿拉伯承袭而来的algebra这个词。他创设了大量的代数符号,用字母代替本知数和未知数的乘幂,也用字母表示一般的系数,他的这套做法后继笛卡儿等人的改进,成为现代代数的形式。韦达把他的符号性代数称作“类的筹算术”,以区别所谓具体的所谓“数的筹算术”,从而指出了代数和算术的区别。他还系统地阐述并改进了三、四次方程的解法,指出了根与系数之间的重要关系,即韦达定理。从而,使当时的代数学系统化了,所以人们也称韦达为“西方代数学之父”。 韦达,F(Viete,Francoic)1540年生于法国普瓦图地区[Poitou,今旺代省的丰特奈-勒孔特(Fontenay.-le-Comte)];1603年12月13日卒于巴黎。

韦达是法国十六世纪最有影响的数学家。他的成就主要有:

平面三角学与球面三角学

《应用于三角形的数学定律》是韦达最早的数学专著之一,也是早期系统论述平面和球面三角学的著作之一。韦达还专门写了一篇论文“截角术”,初步讨论了正弦,余弦,正切弦的一般公式,首次把代数变换应用到三角学中。他考虑含有倍角的方程,具体给出了将表示成的函数,并给出当n等于任意正整数的倍角表达式了。

符号代数与方程理论

《分析方法入门》是韦达最重要的代数著作,也是最早的符号代数专著,书中第1章应用了两种希腊文献:帕波斯的《数学文集》第7篇和丢番图著作中的解题步骤结合起来,认为代数是一种由已知结果求条件的逻辑分析技巧,并自信希腊数学家已经应用了这种分析术,他只不过将这种分析方法重新组织。韦达不满足于丢番图对每一问题都用特殊解法的思想,试图创立一般的符号代数。他引入字母来表示量,用辅音字母B,C,D等表示已知量,用元音字母A(后来用过N)等表示未知量x,而用A quadratus,A cubus 表示,并将这种代数称为本“类的运算”以此区别于用来确定数目的“数的运算”。当韦达提出类的运算与数的运算的区别时,就已规定了代数与算术的分界。这样,代数就成为研究一般的类和方程的学问,这种革新被认为是数学史上的重要进步,它为代数学的发展开辟了道路,因此韦达被西方称为“代数学之父”。1593年,韦达又出版了另一部代数学专著──《分析五篇》(5卷,约1591年完成);《论方程的识别与订正》是韦达逝世后由他的朋友A.安德森在巴黎出版的,但早在1591年业已完成。其中得到一系列有关方程变换的公式,给出了G.卡尔达诺三次方程和L.费拉里四次方程解法改进后的求解公式。而另一成就是记载了著名的韦达定理,即方程的根与系数的关系式。韦达还探讨了代数方程数值解的问题,1591年已有纲要,1600年以《幂的数值解法》为题出版。

几何学的贡献

1593年韦达在《分析五篇》中曾说明怎样用直尺和圆规作出导致某些二次方程的几何问题的解。同年他的《几何补篇》(Supplementum geometriae)在图尔出版了,其中给尺规作图问题所涉及的一些代数方程知识。此外,韦达最早明确给出有关圆周率π值的无穷运算式,而且创造了一套10进分数表示法,促进了记数法的改革。之后,韦达用代数方法解决几何问题的思想由笛卡儿继承,发展成为解析几何学。

点击显示
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •