今天教学了分数乘分数(例4和例5),在课前研究教材时就觉得不太好理解,因为例题中都有两个单位1, 比如画斜线的1份占1/2的1/4,此时的单位1是1/2,但是对于整个长方形来说是1/8,此时的单位1是一个长方形。
后面的1/2的3/4,以及对例5的两个算式的理解都是同出一辙。但要注意两者教学时的区别:例4是让学生从图中猜想(感知)出两个分数乘分数的结果。例5是让学生先猜算结果,再用图来验证。二者在教学中的顺序是相反的,但其目的都是让学生从图形直观感知进而理会出分数乘分数的计算方法。
但是从学生的反馈来看,好像不能够充分理解,确实是太抽象了,虽然有图的辅助。分开来看都能理解斜线部分是1/2的1/4,又是这张纸的1/8。但是为什么1/2的1/4就是1/8呢?这其间可是隐含着两个不同的单位1啊。学生能转得过来吗?单靠猜想感知行吗?教学时我是照书按步就班的教的,但有不少学生好像钻到云雾里去了。
为什么呢?怎么办呢?
原因很简单太抽象了。
办法是有的化抽象为形象:我们来看看练习九的第1题,与例题的最大的区别在于例题是在数之间思考,练习中的第1题是在数量之间的思考。不要小瞧这一点变化,借助数量来理解就比例题数之间的理解要容易得多。
本课的教学目的是教学分数乘分数的计算方法,前面的几个例题都是借助具体的数量让学生理解算理的,而分数乘分数比前面的几个例题都复杂些,但是却摆脱数量而抽象成数,学生的思维难度陡增。为什么不借助数量呢?如果把例题转换成像练习九第1题这样的情境,学生会很容易列式,也比较容易理解算理。在此基础之上,再抽象成数,如例题式样的,学生学起来会好得多。]