教学目标
1.能根据具体情境,灵活运用圆柱表面积的计算方法解决生活中一些简单的问题,感受到数学与生活的密切联系。
2.通过想象、操作等活动,知道圆柱侧面展开后可以是一个长方形,加深对圆柱特征的认识,发展空间观念。
3.结合具体情境和动手操作,探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。
教学重点
认识圆柱侧面展开图的多样性。
教学难点
能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。
教学用具
课件、圆柱体的瓶子、剪子
教学过程
一、创设情境,引起兴趣。
拿出圆柱体茶叶罐,谁能说说圆柱由哪几部分组成的?想一想工人叔叔做这个茶叶罐是怎样下料的?(学生会说出做两个圆形的底面再加一个侧面)那么大家猜猜侧面是怎样做成的呢?(说说自己的猜想)
二、自主探究,发现问题
研究圆柱侧面积:
1.独立操作:利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的方式验证刚才的猜想。
2.观察对比:观察展开的图形各部分与圆柱体有什么关系?
3.小组交流:能用已有的知识计算它的面积吗?
4.小组汇报。 (选出一个学生已经展开的图形贴到黑板上)
重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)
长方形的面积=圆柱的侧面积即 长宽 =底面周长高,所以,
圆柱的侧面积=底面周长高 S 侧 == C h
如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2rh
如果圆柱展开是平行四边形,是否也适用呢?
学生动手操作,动笔验证,得出了同样适用的结论。(因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)
研究圆柱表面积:
1.现在请大家试着求出这个圆柱体茶叶罐用料多少。
学生测量,计算表面积。
2.圆柱体的表面积怎样求呢?
得出结论:圆柱的表面积 = 圆柱的侧面积+底面积2
3.动画:圆柱体表面展开过程
三、实际应用
1.解决书上的例题。
2.填空。
圆柱的侧面沿着高展开可能是( )形,也可能是( )形。第二种情况是因为( )。
3.要求一个圆柱的表面积,一般需要知道哪些条件( )。
4.教材第六页试一试。