教学要求
1.使学生理解比的意义,认识比的各部分名称。会正确读写比。
2.能正确的求比值,掌握比、除法和分数的关系。
3.培养学生的比较、分析和抽象概括能力。
4、加强知识间的联系,使所学的知识系统化,渗透知识间相互联系的观点。
教学重点:理解比的意义
教学难点:理解比与分数、除法的关系。
教材分析:
这部分是学生学过分数与除法的关系,分数乘除法的意义,分数乘除法应用题的基础上教学的。由于分数与除法有着密切的联系,把比的知识放在分数除法的后面进行教学,加强了知识间的内在联系,又为学习其他知识以及比例的知识打好基础。
学情分析:
因为比的现象在生活中司空见惯,例如按一定的比稀释清洁剂,加工混凝土等等都用到比的知识。学生有生活的一些体验,因而可以从学生的兴趣出发展通过观察、比较、讨论,感受比的含义和特征。进而了解比与除法、分数的关系。
教学过程:
活动一
1、情境引入:出示一面国旗联合国旗的图案,我国第一艘载人飞船神州五号顺利升空。这是扬利伟在飞船上向人们展示的一面中华人民共和国和联合国国旗的图案,这个图案长是15厘米,宽是10厘米,根据这两个条件可以提出什么问题?(可提的问题很多,教师有选择地板书。①长是宽的几倍?②宽是长的几分之几?)
2、揭示课题:长是宽的几倍或者宽是长的几分之几是我们用以前学过的除法对这面旗的长和宽进行比较的,今天我们再学习一种对两个数量进行比较的新的方法。这就是比(板书课题)
活动二:
1、教学比的意义。
有时我们也把这两个数量之间的关系说成:长和宽的比是15比10,宽与长的比是10比15。
2、进一步理解比的意义。
神舟五号进入运行轨道后,在距地350千米的高空做圆周运动,平均90分钟绕地球一周,大约运行42252千米。
你能提出什么问题?
你能用比表示路程和时间的关系吗?
3、小组讨论,你是怎么理解比的意义?
得出:两个数相除又叫两个数的比。
4、比的写法和各部分名称及求比值的方法
介绍比号、比表示的方法、比的各部分名称,
①中间的:叫做比号,读的时候直接读比。
②比的各部分名称是什么呢?请大家看书p44的内容。
③介绍比各部分的名称,求比值方法,并板书。
5、比、除法、分数之间的关系
比、除法、分数有什么联系和区别?
联系:a:b=ab=
区别:比表示两个数关系的式子,分数是一个数,除法是一种运算。
那比的后项能不能为零呢?既然比的后项不能是0,而足球赛中常出现的2:0的意义是什么?它是一个比吗?
足球赛中记录的2:0的意义只表示某一队与另一队比赛各得的进球分数,不需表示两队所得分数的倍比关系,这与今天学习数学中的比的意义不同,它虽然借用了比的写法,但它不是一个比。
比的另一种表示方法,就是写成分数形式。
(4)质疑:对本节课的内容你又不清楚的地方吗?
活动三
1.填空:
(1)完成一项工程,甲8天完成,乙12天完成,甲乙两人工作时间的比是():()。
(2)如果a:b=c,那么a是比的(),b是比的(),c是比的()。
(3)求比值:72:24,0.8:3.2,1.5小时:20分钟。
2、完成44页做一做内容。
3、根据下面的信息,你能想到那些问题?
六年一班有男生24人,女生26人。
张师傅5天加工300个零件。2枝钢笔11元。
课题:比的基本性质
教学目标:
使学生理解和掌握比的基本性质,能应用比的基本性质化简比。
培养学生的抽象概括能力。
3、渗透转化的数学思想。
教学重点:理解比的基本性质,掌握化简比的方法。
教学难点:掌握化简比的方法。
教材分析:比的基本性质是在学生学习比的意义,比与分数、除法的关系,商不变的性质和分数基本性质的基础上进行教学的。教材联系学过的除法中商不变的性质和分数基本性质,通过想一想启发学生找出比中有什么相应的性质,然后概括出比的基本性质,应用这个性质可以把比化成最简单的整数比。
学情分析:学生在以前的学习中,已经掌握了商不变的性质和分数基本性质,六年级的学生有一定的推理概括能力,他们完全可以根据比与分数、除法的关系,推导出比的基本性质,这节课通过让学生猜想--验证--应用,让学生理解比的基本性质,应用性质化简比。
教学过程
活动一
1、出示例1,出示例1,让学生解答。
教学比例的基本性质
(1)、猜想:我们学过除法中商不变的性质和分数的基本性质,根据比同除法、分数之间的联系,你有什么联想和猜测呢?
生:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
(2)、验证:大家敢于猜想值得表扬,许多发明创造都来自于猜想。不过,猜想毕竟是猜想,它还有待于证明。你们能想办法对自己的猜想进行验证吗?(让几个小组的代表说一说验证过程并板书在黑板上。)
①根据分数、比、除法的关系验证。
②根据比值验证。
......
③教师小结:大家的验证都说明了以上的猜想是正确的,这个规律(指板书)就叫做比的基本性质(板书课题)。
④总结比的基本性质,为什么强调0除外呢?
活动二
教学比的基本性质的应用,请同学们想一想,比的基本性质有什么样的用途?
比的基本性质主要用来化简比,一般把比化成最简单的整数比(板书:最简单的整数比。)
根据你自己的理解,能说一说什么是最简单的整数比吗?
(前项和后项是互质数。)
请同学们解答的例1(1),这两个比是最简比吗?让学生试着化简比。
让学生试做后,总结方法。
出示例1(2)①1/6:2/9②0.75:2
学生先讨论方法,再试做。
小结方法:化简时比的前项和后项都是整数时,可以把比写成分数的形式再化简;是小数先转化为整数;是分数可以用求比值的方法化简。但要注意,这个结果必须是一个比。
化简比与求比值有什么不同?
质疑
活动三
1、做一做46页化简比。
2、48页第4题
课题:比的应用
教学目标
1、让学生了解比在生活中的广泛应用,探索按比例分配的解决方法,并能用来解决有关实际问题。
2、培养学生自主探索解决问题的能力,培养学生的创造性思维和实践能力。
3、树立用自己学来的知识帮忙解决问题的意识。
教学重点掌握按比例分配的解决方法.
教学难点灵活解决实际问题。
教材分析:这部分内容是在学生学习了比与分数的联系,已掌握简单分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关的实际问题的一个课例,掌握了按比例分配的解题方法,不仅能有效地解决生活、工作中把一个数量按照一定的比进行分配的问题,也为以后学习比例比例尺奠定了基础。
学情分析:对于按比例分配问题学生在以往的学习生活过程中曾经遇到过,甚至解决过,每个学生都有一定体悟和经验,但是对于这种分配方法没有总结和比较过,没有一个系统的思维方式。通过今天的学习,将学生的无序思维有序化、数学化、系统化,总结并内化成学生的一个巩固的规范的分配方法。
教学过程
活动一
1、课前调查
奶茶中牛奶和红茶的比是2∶9。从这句话中你看出了什么?
牛奶是红茶的2/9,红茶是牛奶的9/2,红茶是奶茶的/9/11,牛奶是奶茶的2/11。
2、实际操作
要配置220毫升奶茶,需要多少牛奶和多少红茶?
学生讨论,研究不同算法。
解法一:220/(2+9)=20ml,20*2=40ml,20*9=180ml
解法二:2+9=11220*(9/11)=180ml220*(2/11)=40ml
讨论出几种就是集中不强求,比较后找出自己认为的最简单的解法。
学生配置奶茶,共同品尝。
活动二
1、教学例2
书上例2,列式计算
2、生活中常常要把一个数量按一定的比来进行分配,这节课我们来研究比的应用。(板书:比的应用)接下来希望大家能够学以致用,来解决更多的实际问题。
活动三:
1、请帮忙配糖:
一种什锦糖是由奶糖、水果糖和酥糖按3:5:2混合成的,要配制这样的什锦糖50千克,需要奶糖、水果糖、酥糖各多少千克?(鼓励求异思维)
3、帮刘爷爷收电费
刘爷爷管收四家电费,四家合用一个总电表,四月份供付电费83.2元,按每家分电表的度数分摊电费,每家各应收多少钱?
住户王家张家赵家李家
分电表度数40382953
3、陆老师和高老师合租一套房,高老师住30平方米的房间,陆老师住20平方米的房间,客厅厨房等公用部分的面积是30平方米,每月房租1000元,房租怎样分配才合理?
4、总结全课
比的应用广泛,在工业、农业、医药......用途很广,同学们今后要留心观察生活,在实际生活中运用所学的知识来解决问题。